Skip to main content
Log in

Intrinsic changes in photosynthetic parameters of carrot leaves under increasing CO2 concentrations and soil moisture regimes

  • Original Papers
  • Published:
Photosynthetica

Abstract

A controlled growth chamber experiment was conducted to investigate the short-term water use and photosynthetic responses of 30-d-old carrot seedlings to the combined effects of CO2 concentration (50–1 050 µmol mol−1) and moisture deficits (−5, −30, −55, and −70 kPa). The photosynthetic response data was fitted to a non-rectangular hyperbola model. The estimated parameters were compared for effects of moisture deficit and elevated CO2 concentration (EC). The carboxylation efficiency (α) increased in response to mild moisture stress (−30 kPa) under EC when compared to the unstressed control. However, moderate (−55 kPa) and extreme (−70 kPa) moisture deficits reduced α under EC. Maximum net photosynthetic rate (P Nmax) did not differ between mild water deficit and unstressed controls under EC. Moderate and extreme moisture deficits reduced P Nmax by nearly 85 % compared to controls. Dark respiration rate (R D) showed no consistent response to moisture deficit. The CO2 compensation concentration (Γ) was 324 µmol mol−1 for −75 kPa and ranged 63–93 µmol mol−1 for other moisture regimes. Interaction between moisture deficit and EC was noticed for P N, ratio of intercellular and ambient CO2 concentration (C i/C a), stomatal conductance (g s ), and transpiration rate (E). P N was maximum and C i/C a was minimum at −30 kPa moisture deficit and at C a of 350 µmol mol−1. The g s and E showed an inverse relationship at all moisture deficit regimes and EC. Water use efficiency (WUE) increased with moisture deficit up to −55 kPa and declined thereafter. EC showed a positive influence towards sustaining P N and increasing WUE only under mild moisture stress, and no beneficial effects of EC were noticed at moderate or extreme moisture deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C a :

ambient CO2 concentration

C i :

internal CO2 concentration

E:

leaf transpiration rate

g s :

stomatal conductance

P N :

net photosynthetic rate

R D :

dark respiration rate

RuBPCO:

ribulose-1,5-bisphosphate carboxylase/oxygenase

WUE:

water use efficiency

Γ:

carbon dioxide compensation concentration

References

  • Aniya, A.O., Herzog, H.: Water use efficiency, leaf area and leaf gas exchange of cowpeas under midseason drought.-Eur. J. Agron. 20: 327–339, 2004.

    Article  Google Scholar 

  • Azam, F., Farooq, S.: Elevated CO2 and stress tolerance in crop plants with particular reference to agro-climatic conditions of Pakistan.-Pak. J. biol. Sci. 6: 1096–1107, 2003.

    Google Scholar 

  • Baker, J.T., Allen, L.H., Jr., Boote, K.J., Pickering, N.B.: Rice responses to drought under carbon dioxide enrichment. 1. Growth and yield.-Global Change Biol. 3: 119–128, 1997.

    Article  Google Scholar 

  • Bowes, G.: Photosynthetic responses to changing atmospheric carbon dioxide concentration.-In: Baker, N.R. (ed.): Photosynthesis and the Environment. Pp. 387–407. Kluwer Academic Publ., Dordrecht-Boston-London 1996.

    Google Scholar 

  • Brodribb, T.: Dynamics of changing intercellular CO2 concentration (Ci) during drought and determination of minimum functional Ci.-Plant Physiol. 111: 179–185, 1996.

    PubMed  CAS  Google Scholar 

  • Caemmerer, S. von, Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange rates of leaves.-Planta 153: 376–387, 1981.

    Article  Google Scholar 

  • Cannel, M.G.R., Thornley, J.H.M.: Temperature and CO2 responses of leaf and canopy photosynthesis: A clarification using the non-rectangular hyperbola model of photosynthesis.-Ann. Bot. 82: 883–892, 1998.

    Article  Google Scholar 

  • Chaves, M.M., Pereira, J.S.: Water stress, CO2 and climate change.-J. exp. Bot. 43: 1131–1139, 1992.

    Article  Google Scholar 

  • Chen, X.M., Begonia, G.B., Alm, D.M., Hesketh, J.D.: Responses of soybean leaf photosynthesis to CO2 and drought.-Photosynthetica 29: 447–454, 1993.

    CAS  Google Scholar 

  • Cure, J.D., Acock, B.: Crop responses to carbon dioxide doubling: a literature survey.-Agr. Forest Meteorol. 38: 127–145, 1986.

    Article  Google Scholar 

  • Drake, B.G., Gonzàlez-Meler, M.A., Long, S.P.: More efficient plants: A consequence of rising atmospheric CO2?-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 609–639, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Druţă, A.: Effect of long term exposure to high CO2 concentrations on photosynthetic characteristics of Prunus avium L. plants.-Photosynthetica 39: 289–297, 2001.

    Article  Google Scholar 

  • Farquhar, G.D., Caemmerer, S. von, Berry, J.A.: Models of photosynthesis.-Plant Physiol. 125: 42–45, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis.-Annu. Rev. Plant Physiol. Plant mol. Biol. 33: 317–345, 1982.

    CAS  Google Scholar 

  • Flexas, J., Escalona, J.M., Medrano, H.: Down-regulation of photosynthesis by drought under field conditions in grapevine leaves.-Aust. J. Plant Physiol. 25: 893–900, 1998.

    Article  Google Scholar 

  • Hogan, K.P., Smith, A.P., Ziska, L.H.: Potential effects of elevated CO2 and changes in temperature on tropical plants.-Plant Cell Environ. 14: 763–778, 1991.

    Article  Google Scholar 

  • Huxman, T.E., Hamerlynck, E.P., Moore, B.D., Smith, S.D., Jordan, D.N., Zitzer, S.F., Nowak, R.S., Coleman, J.S., Seemann, J.R.: Photosynthetic down-regulation in Larrea tridentata exposed to elevated atmospheric CO2: interaction with drought under glasshouse and field (FACE) exposure.-Plant Cell Environ. 21: 1153–1161, 1998.

    Article  Google Scholar 

  • Idso, K.E., Idso, S.B.: Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research.-Agr. Forest Meteorol. 69: 153–203, 1994.

    Article  Google Scholar 

  • Kimball, B.A., Pinter, P.J., Garcia, R.L., LaMorte, R.L., Wall, G.W., Hunsaker, D.J., Wechsung, G., Wechsung, F., Kartschall, T.: Productivity and water use of wheat under free-air CO2 enrichment.-Global Change Biol. 1: 429–442, 1995.

    Article  Google Scholar 

  • Kirschbaum, M.U.F.: The sensitivity of C3 photosynthesis to increasing CO2 concentration: a theoretical analysis of its dependence on temperature and background CO2 concentration.-Plant Cell Environ. 17: 747–754, 1994.

    Article  CAS  Google Scholar 

  • Kyei-Boahen, S., Astatkie, T., Lada, R., Gordon, R., Caldwell, C.: Gas exchange of carrot leaves in response to elevated CO2 concentrations.-Photosynthetica 41: 597–603, 2003.

    Article  CAS  Google Scholar 

  • Lauer, M.J., Pallardy, S.G., Blevins, D.G., Douglas, D.D.: Whole leaf carbon exchange characteristics of phosphate deficient soybeans (Glycine max L.).-Plant Physiol. 91: 848–854, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Leuning, R., Dunin, F.X., Wang, Y.P.: A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. II. Comparison with measurements.-Agr. Forest Meteorol. 91: 113–125, 1998.

    Article  Google Scholar 

  • Li, F., Kang, S., Zhang, J.: Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat.-Agr. Water Manage. 67: 221–233, 2004.

    Article  Google Scholar 

  • Liu, F., Andersen, M.N., Jacobsen, S.-E., Jensen, C.R.: Stomatal control and water use efficiency of soybean (Glycine max L. Merr) during progressive soil drying.-Environ. exp. Bot. 54: 33–40, 2005.

    Article  CAS  Google Scholar 

  • Liu, X., Sievert, J., Arpaia, M., Madore, M.A.: Postulated physiological roles of seven-carbon sugars mannoheptulose and perseritol in avocado.-J. amer. Soc. hort. Sci. 127: 108–114, 2002.

    CAS  Google Scholar 

  • Lutze, J.L., Gifford, R.M.: Carbon storage and productivity of a carbon dioxide enriched nitrogen limited grass sward after one year’s growth.-J. Biogeogr. 22: 227–233, 1995.

    Article  Google Scholar 

  • Magliluo, V., Bindi, M., Rana, M.: Water use of irrigated potato (Solanum tuberosum L.) grown under free air carbon dioxide enrichment in Italy.-Agr. Ecosyst. Environ. 97: 65–80, 2003.

    Article  Google Scholar 

  • Marshall, B., Biscoe, P.V.: A model for C3 leaves describing the dependence of net photosynthesis on irradiance. I. Derivation.-J. exp. Bot. 31: 29–39, 1980.

    Article  CAS  Google Scholar 

  • Morison, J.I.L.: Sensitivity of stomata and water use efficiency to high CO2.-Plant Cell Environ. 8: 467–474, 1985.

    Article  Google Scholar 

  • Nederhoff, E.M., Vegter, J.G.: Photosynthesis of stands of tomato, cucumber and sweet pepper measured in greenhouse under various CO2 concentrations.-Ann. Bot. 73: 353–361, 1994.

    Article  Google Scholar 

  • Picon, C., Ferhi, A., Guehl, J.-M.: Concentration and δ13C of leaf carbohydrates in relation to gas exchange in Quercus robur under elevated CO2 and drought.-J. exp. Bot. 48: 1547–1556, 1997.

    CAS  Google Scholar 

  • Prior, S.A., Rogers, H.H., Sionit, N., Patterson, P.R.: Effects of elevated atmospheric CO2 on water relations of soya bean.-Agr. Ecosyst. Environ. 35: 13–25, 1991.

    Article  CAS  Google Scholar 

  • Radoglou, K.M., Aphalo, P., Jarvis, P.G.: Response of photosynthesis, stomatal conductance and water use efficiency to elevated CO2 and nutrient supply in acclimated seedlings of Phaseolus vulgaris L.-Ann. Bot. 70: 257–264, 1992.

    CAS  Google Scholar 

  • Rajasekaran, L.R., Kriedemann, P.E., Aspinall, D., Paleg, L.G.: Physiological significance of proline and glycinebetaine: Maintaining photosynthesis during NaCl stress in wheat.-Photosynthetica 34: 357–366, 1997.

    Article  CAS  Google Scholar 

  • Rodriguez, D., Ewert, F., Goudriaan. J., Manderscheid, R., Burkart, S., Weigel, H.J.: Modelling the response of wheat canopy assimilation to atmospheric CO2 concentrations.-New Phytol. 150: 337–346, 2001.

    Article  Google Scholar 

  • Sage, R.F.: Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective.-Photosynth. Res. 39: 351–368, 1994.

    Article  CAS  Google Scholar 

  • Sage, R.F., Cen, Y.-P., Li, M.: The activation state of Rubisco directly limits photosynthesis at low CO2 and low O2 partial pressures.-Photosynth. Res. 71: 241–250, 2002.

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute: SAS OnlineDoc®, Version 8.-SAS Institute, Cary 1999.

    Google Scholar 

  • Schabenberger, O., Tharp, B.E., Kells, J.J., Penner, D.: Statistical tests for hormesis and effective dosages in herbicide dose response.-Agron. J. 91: 713–721, 1999.

    Article  CAS  Google Scholar 

  • Sharkey, T.D.: Water stress effects on photosynthesis.-Photosynthetica 24: 651, 1990.

    Google Scholar 

  • Vu, J.C.V., Allen, L.H., Jr., Boote, K.J., Bowes, G.: Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean.-Plant Cell Environ. 20: 68–76, 1997.

    Article  CAS  Google Scholar 

  • Wolf, J.: Effects of climate change on wheat production potential in the European community.-Eur. J. Agron. 2: 281–292, 1993.

    Google Scholar 

  • Wu, D., Wang, G., Bai, Y., Liao, J.: Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels.-Agr. Ecosyst. Environ. 104: 493–507, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Lada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiagarajan, A., Lada, R.R. Intrinsic changes in photosynthetic parameters of carrot leaves under increasing CO2 concentrations and soil moisture regimes. Photosynthetica 45, 43–50 (2007). https://doi.org/10.1007/s11099-007-0007-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-007-0007-3

Additional key words

Navigation