Skip to main content
Log in

International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics

  • Review
  • Published:
Photosynthetica

An Erratum to this article was published on 01 September 2007

Abstract

The review sums up research conducted at CIAT within a multidiscipline effort revolving around a strategy for developing improved technologies to increase and sustain cassava productivity, as well as conserving natural resources in the various eco-edaphic zones where the crop is grown, with emphasis on stressful environments. Field research has elucidated several physiological plant mechanisms underlying potentially high productivity under favourable hot-humid environments in the tropics. Most notable is cassava inherent high capacity to assimilate carbon in near optimum environments that correlates with both biological productivity and root yield across a wide range of germplasm grown in diverse environments. Cassava leaves possess elevated activities of the C4 phosphoenolpyruvate carboxylase (PEPC) that also correlate with leaf net photosynthetic rate (P N) in field-grown plants, indicating the importance of selection for high P N. Under certain conditions such leaves exhibit an interesting photosynthetic C3-C4 intermediate behaviour which may have important implications in future selection efforts. In addition to leaf P N, yield is correlated with seasonal mean leaf area index (i.e. leaf area duration, LAD). Under prolonged water shortages in seasonally dry and semiarid zones, the crop, once established, tolerates stress and produces reasonably well compared to other food crops (e.g. in semiarid environments with less than 700 mm of annual rain, improved cultivars can yield over 3 t ha−1 oven-dried storage roots). The underlying mechanisms for such tolerance include stomatal sensitivity to atmospheric and edaphic water deficits, coupled with deep rooting capacities that prevent severe leaf dehydration, i.e. stress avoidance mechanisms, and reduced leaf canopy with reasonable photosynthesis over the leaf life span. Another stress-mitigating plant trait is the capacity to recover from stress, once water is available, by forming new leaves with even higher P N, compared to those in nonstressed crops. Under extended stress, reductions are larger in shoot biomass than in storage root, resulting in higher harvest indices. Cassava conserves water by slowly depleting available water from deep soil layers, leading to higher seasonal crop water-use and nutrient-use efficiencies. In dry environments LAD and resistance to pests and diseases are critical for sustainable yields. In semiarid zones the crop survives but requires a second wet cycle to achieve high yields and high dry matter contents in storage roots. Selection and breeding for early bulking and for medium/short-stemmed cultivars is advantageous under semiarid conditions. When grown in cooler zones such as in tropical high altitudes and in low-land sub-tropics, leaf P N is greatly reduced and growth is slower. Thus, the crop requires longer period for a reasonable productivity. There is a need to select and breed for more cold-tolerant genotypes. Selection of parental materials for tolerance to water stress and infertile soils has resulted in breeding improved germplasm adapted to both favourable and stressful environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerson, R.C.: Stomatal response of cotton to water stress and abscisic acid as affected by water stress history.-Plant Physiol. 65: 455–459, 1980.

    PubMed  CAS  Google Scholar 

  • Ackerson, R.C., Hebert, R.R.: Osmoregulation in cotton in response to water stress. I. Alterations in photosynthesis, leaf conductance, translocation, and ultrastructure.-Plant Physiol. 67: 484–488, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Allem, A.C.: The origin and taxonomy of cassava.-In: Hillocks, R.J., Thresh, J.M., Bellotti, A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 1–16. CABI Publishing, New York 2002.

    Google Scholar 

  • Alves, A.A.C.: Physiological and Developmental Changes in Cassava (Manihot esculenta Crantz) under Water Deficit.-PhD. Thesis. Cornell University, Ithaca 1998.

    Google Scholar 

  • Alves, A.A.C.: Cassava botany and physiology.-In: Hillocks, R.J., Thresh, J.M., Bellotti, A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 67–89. CABI Publishing, New York 2002.

    Google Scholar 

  • Alves, A.A.C., Setter, T.L.: Response of cassava to water deficit: leaf area growth and abscisic acid.-Crop Sci. 40: 131–137, 2000.

    Article  Google Scholar 

  • Angelov, M.N., Sun, J., Byrd, G.T., Brown, R.H., Black, C.C.: Novel characteristics of cassava, Manihot esculenta Crantz, a reputed C3-C4 intermediate photosynthesis species.-Photosynth. Res. 38: 61–72, 1993.

    Article  CAS  Google Scholar 

  • Appleby, R.F., Davies, W.J.: The structure and orientation of guard cells in plants showing stomatal responses to changing vapour pressure difference.-Ann. Bot. 52: 459–468, 1983.

    Google Scholar 

  • Aslam, M., Lowe, S.B., Hunt, L.A.: Effect of leaf age on photosynthesis and transpiration of cassava (Manihot esculenta).-Can. J. Bot. 55: 2288–2295, 1977.

    Google Scholar 

  • Aston, M.J.: Variation of stomatal diffusive resistance with ambient humidity in sunflower (Helianthus annuus).-Aust. J. Plant Physiol. 3: 489–501, 1976.

    Google Scholar 

  • Balagopalan, C.: Cassava utilization in food, feed and industry.-In: Hillocks, R.J., Thresh, J.M., Bellotti, A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 301–318. CABI Publishing, New York 2002.

    Google Scholar 

  • Beeching, J.R., Marmey, P., Gavalda, M.C., Noirot, M., Hayson, H.R., Hughes, M.A., Charrier, A.: An assessment of genetic diversity within a collection of cassava (Manihot esculenta Crantz) germplasm using molecular markers.-Ann. Bot. 72: 515–520, 1993.

    Article  CAS  Google Scholar 

  • Bellotti, A.C.: Anthropod pests.-In: Hillocks, R.J., Thresh, J.M., Bellotti, A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 209–235. CABI Publishing, New York 2002.

    Google Scholar 

  • Bellotti, A.C., Arias, V.B.: The possible role of HCN in the biology and feeding behavior of the cassava burrowing bug (Cyrtomenus bergi Froeschner: Cydnidae: Hemiptera).-In: Roca, W.M., Thro, A.M. (ed.): Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network. Pp. 406–409. Centro Internacional de Agricultura Tropical, Cali 1993.

    Google Scholar 

  • Bellotti, A.C., Riis, L.: Cassava cyanogenic potential and resistance to pests and diseases.-Acta Horticult. 375: 141–141, 1994.

    CAS  Google Scholar 

  • Bellotti, A.C., Vargas, O.H., Arias, B., Castaño, O., Garcia, C.: Cyrtomenus bergi Froeschner, a new pest of cassava: biology, ecology and control.-In: Proceedings of the 7th Symposium of the International Society of Tropical Root and Tuber Crops. Pp. 551–561. 1988.

  • Berg, V.S., El-Sharkawy, M.A., Hernandez, A.D.P., Cock, J.H.: Leaf orientation and water relations in cassava.-In: Annual Meeting of the American Society of Plant Physiologists. P. 186. Louisiana State University, Baton Rouge 1986.

    Google Scholar 

  • Bernal, L.M.: Estudios sobre la actividad fosfoenolpiruvato carboxilasa en cultivares de yucca (Manihot esculenta Crantz). [Studies on the Activity of Phosphoenolpyruvate Carboxylase in Cultivars of Cassava (Manihot esculenta Crantz).]-BSc. Thesis. Pontificia Universidad Javeriana, Bogota 1991. [In Spanish.]

    Google Scholar 

  • Berry, J., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants.-Annu. Rev. Plant Physiol. 31: 491–543, 1980.

    Article  Google Scholar 

  • Björkman, O., Badger, M.R., Armond, P.A.: Response and adaptation of photosynthesis to high temperatures.-In: Turner, N.C., Kramer, P.J. (ed.): Adaptation of Plants to Water and High Temperature Stress. Pp. 233–249. John Wiley & Sons, New York-Chichester-Brisbane-Toronto 1980.

    Google Scholar 

  • Boardman, N.K.: Comparative photosynthesis of sun and shade plants.-Annu. Rev. Plant Physiol. 28: 355–377, 1977.

    Article  CAS  Google Scholar 

  • Bongi, G., Mencuccini, M., Fontanazza, G.: Photosynthesis of olive leaves: effect of light flux density, leaf age, temperature, peltates, and H2O vapor pressure deficit on gas exchange.-J. amer. Soc. horticult. Soc. 112: 143–148, 1987.

    Google Scholar 

  • Boyer, J.S.: Advances in drought tolerance in plants.-Adv. Agron. 56: 187–218, 1996.

    Google Scholar 

  • Brekelbaum, T., Bellotti, A., Lozano, J.C. (ed.): Proceedings: Cassava Protection Workshop.-CIAT, Cali 1978.

  • Brown, A.W.A., Byerly, T.C., Gibbs, M., San Pietro, A. (ed.): Crop Productivity-Research Imperatives.-Michigan Agr. Exp. Stat., East Lancing 1975.

  • Brown, R.H., Bouton, J.H.: Physiology and genetics of interspecific hybrids between photosynthetic types.-Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 435–456, 1993.

    Google Scholar 

  • Bunce, J.A.: Comparative responses of leaf conductance to humidity in single attached leaves.-J. exp. Bot. 32: 629–634, 1981.

    Google Scholar 

  • Bunce, J.A.: Photosynthesis at ambient and elevated humidity over a growing season in soybean.-Photosynth. Res. 3: 307–311, 1982.

    Article  CAS  Google Scholar 

  • Bunce, J.A.: Identifying soybean lines differing in gas exchange sensitivity to humidity.-Ann. appl. Biol. 105: 313–318, 1984.

    Google Scholar 

  • Bunce, J.A.: Effect of boundary layer conductance on the response of stomata to humidity.-Plant Cell Environ. 8: 55–57, 1985.

    Article  Google Scholar 

  • Bunce, J.A.: Measurements and modeling of photosynthesis in field crops.-CRC crit. Rev. Plant Sci. 4: 47–77, 1986.

    CAS  Google Scholar 

  • Burt, R.L.: Carbohydrate utilization as a factor in plant growth.-Aust. J. biol. Sci. 17: 867–877, 1964.

    CAS  Google Scholar 

  • Byrne, D.H., Guerrero, J.M., Bellotti, A.C., Gracen, V.E.: Yield and plant growth responses of Mononychellus mite resistant and susceptible cassava cultivars under protected vs. infested conditions.-Crop Sci. 22: 486–490, 1982.

    Article  Google Scholar 

  • Cadavid, L.F., El-Sharkawy, M.A., Acosta, A., Sánchez, T.: Long-term effects of mulch, fertilization and tillage on cassava grown in sandy soils in northern Colombia.-Field Crops Res. 57: 45–56, 1998.

    Article  Google Scholar 

  • Caicedo, J.A.: Respuesta de cuatro cultivares de yuca (Manihot esculenta Crantz) a la modificacion del estado hidrico del suelo. [Response of Four Cultivars of Cassava (Manihot esculenta Crantz) to the Modification of Soil Moisture.]-BSc. Thesis. Universidad Nacional de Colombia, Palmira 1993. [In Spanish.]

    Google Scholar 

  • Calatayud, P.-A., Barón, C.H., Velasquez, H., Arroyave, J.A., Lamaze, T.: Wild Manihot species do not possess C4 photosynthesis.-Ann. Bot. 89: 125–127, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Calvert, L.A., Thresh, J.M.: The viruses and virus diseases of cassava.-In: Hillocks, R.J., Thresh, J.M., Bellotti, A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 237–260. CABI Publishing, New York 2002.

    Google Scholar 

  • Cayón, M.G., El-Sharkawy, M.A., Cadavid, L.F.: Leaf gas exchange of cassava as affected by quality of planting material and water stress.-Photosynthetica 34: 409–418, 1997.

    Article  Google Scholar 

  • Chabot, B.F., Hicks, D. J.: The ecology of leaf life span.-Annu. Rev. Ecol. Syst. 13: 229–259, 1982.

    Article  Google Scholar 

  • Chapin, F.S., III: Integrated responses of plants to stress.-BioScience 41: 29–36, 1991.

    Article  Google Scholar 

  • Chu, C., Dai, Z., Ku, M.S.B., Edwards, G.E.: Induction of Crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid.-Plant Physiol. 93: 1253–1260, 1990.

    PubMed  CAS  Google Scholar 

  • CIAT: Cassava Program Annual Report for 1983–1998.-Centro Internacional de Agricultura Tropical, Cali 1983–1998.

    Google Scholar 

  • Cock, J.H.: Cassava: New Potential for a Neglected Crop.-Westview, Boulder 1985.

  • Cock, J.H., El-Sharkawy, M.A.: Physiological characteristics for cassava selection.-Exp. Agr. 24: 443–448, 1988a.

    Google Scholar 

  • Cock, J.H., El-Sharkawy, M.A.: The physiological response of cassava to stress.-Proceedings of the 7th Symposium of the International Society of Tropical Root and Tuber Crops. Pp. 451–462. 1988b.

  • Cock, J.H., Franklin, D., Sandoval, G., Juri, P.: The ideal cassava plant for maximum yield.-Crop Sci. 19: 271–279, 1979.

    Article  Google Scholar 

  • Cock, J.H., Porto, M.C.M., El-Sharkawy, M.A.: Water use efficiency of cassava. III. Influence of air humidity and water stress on gas exchange of field grown cassava.-Crop Sci. 25: 265–272, 1985.

    Article  Google Scholar 

  • Cock, J.H., Riaño, N.M., El-Sharkawy, M.A., López, F.Y., Bastidas, G.: C3-C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). II. Initial products of 14CO2 fixation.-Photosynth. Res. 12: 237–241, 1987.

    Article  CAS  Google Scholar 

  • Connor, D.J., Cock, J.H.: Response of cassava to water shortage. II. Canopy dynamics.-Field Crops Res. 4: 285–296, 1981.

    Article  Google Scholar 

  • Connor, D.J., Cock. J.H., Parra, G.E.: Response of cassava to water shortage. I. Growth and yield.-Field Crops Res. 4: 181–200, 1981.

    Article  Google Scholar 

  • Connor, D.J., Palta, J.: Response of cassava to water shortage. III. Stomatal control of plant water status.-Field Crops Res. 4: 297–311, 1981.

    Article  Google Scholar 

  • Cours, G.: Le Manioc a Madagascar.-Memoir. Inst. Scientif. Madagascar 3B: 203–400, 1951.

    Google Scholar 

  • Cowan, I.R.: Stomatal behaviour and environment.-Adv. bot. Res. 4: 117–228, 1977.

    Google Scholar 

  • Davies, W.J., Kozlowski, T.T.: Stomatal response of five woody angiosperms to light intensity and humidity.-Can. J. Bot. 52: 1525–1535, 1974.

    Google Scholar 

  • Davies, W.J., Metcalfe, J., Lodge, T.A., da Costa, A.R.: Plant growth substances and the regulation of growth under drought.-Aust. J. Plant Physiol. 13: 105–125, 1986.

    CAS  Google Scholar 

  • De Tafur, S.M., El-Sharkawy, M.A., Cadavid, L.F.: Response of cassava (Manihot esculenta Crantz) to water stress and fertilization.-Photosynthetica 34: 233–239, 1997a.

    Article  Google Scholar 

  • De Tafur, S.M., El-Sharkawy, M.A., Calle, F.: Photosynthesis and yield performance of cassava in seasonally dry and semiarid environments.-Photosynthetica 33: 249–257, 1997b.

    Article  Google Scholar 

  • Devi, M.T., Raghavendra, A.S.: Photorespiration in C3-C4 intermediate species of Alternanthera and Parthenium: reduced ammonia production and increased capacity of CO2 refixation in the light.-Photosynth. Res. 38: 177–184, 1993.

    Article  CAS  Google Scholar 

  • Dufour, D.L.: Cyanide content of cassava (Manihot esculenta, Euphorbiaceae) cultivars used by Tukanoan Indians in Northwest Amazonia.-Econ. Bot. 42: 255–26, 1988.

    Google Scholar 

  • Edwards, G.E., Sheta, E., Moore, B.d., Dai, Z., Franceschi, V.R., Cheng, S.H., Lin, C.-H., Ku, M.S.B.: Photosynthetic characteristics of cassava (Manihot esculenta Crantz), a C3 species with chlorenchymatous bundle sheath cells.-Plant Cell Physiol. 31: 1199–1206, 1990.

    CAS  Google Scholar 

  • El-Sharkawy, M.A.: Effect of humidity and wind on leaf conductance of field grown cassava.-Rev. Bras. Fisiol. Veget. 2(2): 17–22, 1990.

    Google Scholar 

  • El-Sharkawy, M.A.: Drought-tolerant cassava for Africa, Asia, and Latin America.-BioScience 43: 441–451, 1993.

    Article  Google Scholar 

  • El-Sharkawy, M.A.: Cassava biology and physiology.-Plant mol. Biol. 56: 481–501, 2004.

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy, M.A.: How can calibrated research-based models be improved for use as a tool in identifying genes controlling crop tolerance to environmental stresses in the era of genomics-from an experimentalist’s perspective.-Photosynthetica 43: 161–176, 2005.

    Article  Google Scholar 

  • El-Sharkawy, M.A., Cadavid, L.F.: Genetic variation within cassava germplasm in response to potassium.-Exp. Agr. 36: 323–334, 2000.

    Article  CAS  Google Scholar 

  • El-Sharkawy, M.A., Cadavid, L.F.: Response of cassava to prolonged water stress imposed at different stages of growth.-Exp. Agr. 38: 333–350, 2002.

    Article  Google Scholar 

  • El-Sharkawy, M.A., Cadavid, L.F., De Tafur, S.M.: Nutrient use efficiency of cassava differs with genotype architecture.-Acta Agron. Univ. Nacional-Palmira-Colombia 48: 23–32, 1998a.

    Google Scholar 

  • El-Sharkawy, M.A., Cadavid, L.F., De Tafur, S.M., Caicedo, J.A.: Genotypic differences in productivity and nutrient uptake and use efficiency of cassava as influenced by prolonged water stress.-Acta Agron. Univ. Nacional-Palmira-Colombia 48: 9–22, 1998b.

    Google Scholar 

  • El-Sharkawy, M.A., Cock, J.H.: Water use efficiency of cassava. I. Effects of air humidity and water stress on stomatal conductance and gas exchange.-Crop Sci. 24: 497–502, 1984.

    Article  Google Scholar 

  • El-Sharkawy, M.A., Cock, J.H.: The humidity factor in stomatal control and its effect on crop productivity.-In: Marcelle, R., Clijsters, H., Van Poucke, M. (ed.): Biological Control of Photosynthesis. Pp. 187–198. Martinus Nijhoff Publ., Dordrecht-Boston-Lancaster 1986.

    Google Scholar 

  • El-Sharkawy, M.A., Cock, J.H.: C3-C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). I. Gas exchange.-Photosynth. Res. 12: 219–235, 1987a.

    Article  CAS  Google Scholar 

  • El-Sharkawy, M.A., Cock, J.H.: Response of cassava to water stress.-Plant Soil 100: 345–360, 1987b.

    Article  Google Scholar 

  • El-Sharkawy, M.A., Cock, J.H.: Photosynthesis of cassava (Manihot esculenta Crantz).-Exp. Agr. 26: 325–340, 1990.

    CAS  Google Scholar 

  • El-Sharkawy, M.A., Cock, J.H., De Cadena, G.: Stomatal characteristics among cassava cultivars and their relation to gas exchange.-Exp. Agr. 20: 67–76, 1984a.

    Google Scholar 

  • El-Sharkawy, M.A., Cock, J.H., De Cadena, G.: Influence of differences of leaf anatomy on net photosynthetic rates of some cultivars of cassava.-Photosynth. Res. 5: 235–242, 1984b.

    Article  Google Scholar 

  • El-Sharkawy, M.A., Cock, J.H., Held, A.A.: Photosynthetic responses of cassava cultivars (Manihot escuelenta Crantz) from different habitats to temperature.-Photosynth. Res. 5: 243–250, 1984c.

    Article  Google Scholar 

  • El-Sharkawy, M.A., Cock, J.H., Held, A.A.: Water use efficiency of cassava. II. Differing sensitivity of stomata to air humidity in cassava and other warm-climate species.-Crop Sci. 24: 503–507, 1984d.

    Article  Google Scholar 

  • El-Sharkawy, M.A., Cock, J.H., Hernandez, A.D.P.: Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species.-Photosynth. Res. 7: 137–149, 1985.

    Article  Google Scholar 

  • El-Sharkawy, M.A., Cock, J.H., Lynam, J.K., Hernandez, A.D.P., Cadavid L., L.F.: Relationships between biomass, root-yield and single-leaf photosynthesis in field-grown cassava.-Field Crops Res. 25: 183–201, 1990.

    Article  Google Scholar 

  • El-Sharkawy, M.A., De Tafur, S.M., Cadavid, L.F.: Potential photosynthesis of cassava as affected by growth conditions.-Crop Sci. 32: 1336–1342, 1992a.

    Article  Google Scholar 

  • El-Sharkawy, M.A., De Tafur, S.M., Cadavid, L.F.: Photosynthesis of cassava and its relation to crop productivity.-Photosynthetica 28: 431–438, 1993.

    Google Scholar 

  • El-Sharkawy, M.A., Hernandez, A.D.P, Hershey, C.: Yield stability of cassava during prolonged mid-season water stress.-Exp. Agr. 28: 165–174, 1992b.

    Google Scholar 

  • El-Sharkawy, M., Hesketh, J.: Photosynthesis among species in relation to characteristics of leaf anatomy and CO2 diffusion resistances.-Crop Sci. 5: 517–521, 1965.

    Article  Google Scholar 

  • El-Sharkawy, M.A., Hesketh, J.D.: Citation Classic-Photosynthesis among species in relation to characteristics of leaf anatomy and CO2 diffusion resistances.-Curr. Cont./Agr. Biol. Environ. 27: 14, 1986.

    Google Scholar 

  • El-Sharkawy, M.A., Loomis, R.S., Williams, W.A.: Apparent reassimilation of respiratory carbon dioxide by different plant species.-Physiol. Plant. 20: 171–186, 1967.

    Article  CAS  Google Scholar 

  • El-Sharkawy, M.A., Loomis, R.S., Williams, W.A.: Photosynthetic and respiratory exchanges of carbon dioxide by leaves of grain amaranth.-J. appl. Ecol. 5: 243–251, 1968.

    Article  Google Scholar 

  • Essers, A.J.A.: Removal of Cyanogens from Cassava Roots: Studies on Domestic Sun-drying and Solid-substrate Fermentation in Rural Africa.-Ph.D. Thesis. Wageningen Agricultural University, Wageningen 1995.

    Google Scholar 

  • Evans, L.T.: Crop Evolution, Adaptation and Yield.-Cambridge Univ. Press, Cambridge 1993.

    Google Scholar 

  • Fanjul, L., Jones, H.G.: Rapid stomatal responses to humidity.-Planta 154: 135–138, 1982.

    Article  Google Scholar 

  • Farquhar, G.D.: Feedforward responses of stomata to humidity.-Aust. J. Plant Physiol. 5: 787–800, 1978.

    Google Scholar 

  • Farquhar, G.D., Schulze, E.-D., Kuppers, M.: Response to humidity by stomata of Nicotiana glauca L. and Corylus avellana L. are consistent with the optimization of carbon dioxide uptake with respect to water loss.-Aust. J. Plant Physiol. 7: 315–327, 1980.

    Google Scholar 

  • Flörchinger, F.A., Leihner, D.E., Steinmüller, N., Müller-Sämann, K., El-Sharkawy, M.A.: Effects of artificial topsoil removal on sorghum, peanut and cassava yield.-J. Soil Water Conserv. 55: 334–339, 2000.

    Google Scholar 

  • Forrester, M.L., Krotkov, G., Nelson, C.D.: Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. II. Corn and other monocotyledons.-Plant Physiol. 41: 428–431, 1966.

    PubMed  CAS  Google Scholar 

  • Giaquinta, R.T.: Phloem loading of sucrose.-Annu. Rev. Plant Physiol. 34: 347–387, 1983.

    Article  CAS  Google Scholar 

  • Gollan, T., Turner, N.C., Schulze, E.-D.: The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. III. In the sclerophyllous woody species Nerium oleander.-Oecologia 65: 356–362, 1985.

    Article  Google Scholar 

  • Gutschick, V.P.: Photosynthesis model for C3 leaves incorporating CO2 transport, propagation of radiation, and biochemistry 2. Ecological and agricultural utility.-Photosynthetica 18: 569–595, 1984.

    CAS  Google Scholar 

  • Guzman, G.: Aspectos ecofisiologicos en cultivares anfiestomaticos de yuca (Manihot esculenta Crantz). [Ecophysiological Aspects of Amphistomatous Cultivars of Cassava (Manihot esculenta Crantz).]-BSc. Thesis. Pontificia Universidad Javeriana, Bogota 1989. [In Spanish.]

    Google Scholar 

  • Haberlandt, G.: Physiological Plant Anatomy.-McMillan and Co., London 1914.

    Google Scholar 

  • Hall, A.E., Hoffman, G.J.: Leaf conductance response to humidity and water transport in plants.-Agron. J. 68: 876–881, 1976.

    Article  Google Scholar 

  • Hall, A.E., Schulze, E.-D.: Stomatal response to environment and a possible interrelation between stomatal effects on transpiration and CO2 assimilation.-Plant Cell Environ. 3: 467–474, 1980.

    Google Scholar 

  • Hatch, M.D.: C4 pathway photosynthesis: mechanism and physiological function.-Trends biochem. Sci. 2: 199–202, 1977.

    CAS  Google Scholar 

  • Hatch, M.D.: C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure.-Biochim. biophys. Acta 895: 81–106, 1987.

    CAS  Google Scholar 

  • Held, A.A.: Control of Canopy Photosynthesis and Water-use Efficiency in Well-watered Field Crops.-PhD. Thesis. University of California, Davis 1991.

    Google Scholar 

  • Henson, I.E.: The heritability of abscisic acid accumulation in water-stressed leaves of pearl millet (Pennisetum americanum (L.) Leeke).-Ann. Bot. 53: 1–11, 1984a.

    CAS  Google Scholar 

  • Henson, I.E.: Effects of atmospheric humidity on abscisic acid accumulation and water stress in leaves of rice (Oriza sativa L.).-Ann. Bot. 54: 569–582, 1984b.

    CAS  Google Scholar 

  • Herold, A.: Regulation of photosynthesis by sink activity-the missing link.-New Phytol. 86: 131–144, 1980.

    Article  CAS  Google Scholar 

  • Hershey, C.H.: Breeding cassava for adaptation to stress conditions: development of a methodology.-In: Proceedings of the 6th Symposium of the International Society of Tropical Root and Tuber Crops. Pp. 303–314. 1984.

  • Hershey, C.H., Jennings, D.L.: Progress in breeding cassava for adaptation to stress.-Plant Breed. Abstr. 62: 823–831, 1992.

    Google Scholar 

  • Hershey, C.H., Kawano, K., Lozano, J.C., Bellotti, A.C.: Breeding cassava for adaptation to a new ecosystem: a case study from the Colombian Llanos.-In: Proceedings of the 7th Symposium of the International Society of Tropical Root and Tuber Crops. Pp. 525–540. 1988.

  • Hillocks, R.J., Wydra, K.: Bacterial, fungi and nematode diseases.-In: Hillocks, R.J., Thresh, J.M., Bellotti, A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 261–280. CABI Publishing, New York 2002.

    Google Scholar 

  • Hirasawa, T., Iida, Y., Ishihara, K.: [Effect of leaf water potential and air humidity on photosynthetic rate and diffusive conductance in rice plants.]-Jap. J. Crop Sci. 57: 112–118, 1988. [In Jap.]

    Google Scholar 

  • Ho, L.C.: Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength.-Annu. Rev. Plant Physiol. Plant mol. Biol. 39: 355–378, 1988.

    Article  CAS  Google Scholar 

  • Hoffman, G.J., Rawlins, S.L.: Growth and water potential of root crops as influenced by salinity and relative humidity.-Agron. J. 63: 877–881, 1971.

    Article  Google Scholar 

  • Hoffman, G.J., Rawlins, S.L., Garber, M.J., Cullen, E.M.: Water relations and growth of cotton as influenced by salinity and relative humidity.-Agron. J. 63: 822–826, 1971.

    Article  Google Scholar 

  • Howeler, R.: Potassium nutrition of cassava.-In: Munson, R.D. (ed.): Potassium in Agriculture. Pp. 819–841. ASA, CSSA, SSSA, Madison 1985.

    Google Scholar 

  • Howeler, R.H.: Cassava mineral nutrition and fertilization.-In: Hillocks, R.J., Thresh, J.M., Bellotti, A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 115–147. CABI Publishing, New York 2002.

    Google Scholar 

  • Howeler, R.H., Cadavid, L.F.: Accumulation and distribution of dry matter and nutrients during a 12-month growth cycle of cassava.-Field Crops Res. 7: 123–139, 1983.

    Article  Google Scholar 

  • Howeler, R.H., Cadavid, L.F.: Short-and long-term fertility trials in Colombia to determine the nutrient requirements of cassava.-Fertilizer Res. 26: 61–80, 1990.

    Article  CAS  Google Scholar 

  • Howeler, R.H., Cadavid, L.F., Burckhardt, E.: Response of cassava to VA mycorrhizal inoculation and phosphorus application in greenhouse and field experiments.-Plant Soil 69: 327–339, 1982.

    Article  CAS  Google Scholar 

  • Howeler, R.H., Sieverding, E.: Potential and limitation of mycorrhizal inoculation illustrated by experiments with field grown cassava.-Plant Soil 75: 245–261, 1983.

    Article  CAS  Google Scholar 

  • Hsiao, T.C.: Plant responses to water stress.-Annu. Rev. Plant Physiol. 24: 519–570, 1973.

    Article  CAS  Google Scholar 

  • Hsiao, T.C., Acevedo, E., Fereres, E., Henderson, D.W.: Water stress, growth, and osmotic adjustment.-Phil. Trans. roy. Soc. London B 273: 479–500, 1976.

    Google Scholar 

  • Huber, W., Sankhla, N.: C4 pathway and regulation of the balance between C4 and C3 metabolism.-In: Lange, O.L., Kappen, L., Schulze, E.-D. (ed.): Water and Plant Life. Problems and Modern Approaches. Pp. 335–386. Springer-Verlag, Berlin-Heidelberg-New York 1976.

    Google Scholar 

  • Humphries, E.C.: The dependence of photosynthesis on carbohydrate sinks: current concepts.-In: Proceedings of the 1st Symposium of International Society of Tropical Root and Tuber Crops. Pp. 34–45. St. Augustin 1967.

  • Hunt, L.A., Wholey, D.W., Cock, J.H.: Growth physiology of cassava.-Field Crop Abstr. 30: 77–91, 1977.

    Google Scholar 

  • Irikura, Y., Cock, J.H., Kawano, K.: The physiological basis of genotype-temperature interactions in cassava.-Field Crops Res. 2: 227–239, 1979.

    Article  Google Scholar 

  • James, W.O.: Manioc in Africa.-Stanford University Press, Stanford 1959.

    Google Scholar 

  • Jarvis, P.G.: Stomatal response to water stress in conifers.-In: Turner, N.C., Kramer, P.J. (ed.): Adaptation of Plants to Water and High Temperature Stress. Pp. 105–122. John Wiley & Sons, New York-Chichester-Brisbane-Toronto 1980.

    Google Scholar 

  • Jarvis, P.G., McNaughton, K.G.: Stomatal control of transpiration: scaling up from leaf to region.-Adv. ecol. Res. 15: 1–49, 1986.

    Google Scholar 

  • Jennings, D.L., Iglesias, C.: Breeding for crop improvement.-In: Hillocks, R.J., Tresh, J.M., Bellotti, A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 149–166. CABI Publ., New York 2002.

    Google Scholar 

  • Jones, H., Leigh, R.A., Tomas, A.D., Wyn Jones, R.G.: The effect of abscisic acid on cell turgor pressures, solute content and growth of wheat roots.-Planta 170: 257–262, 1987.

    Article  CAS  Google Scholar 

  • Jones, M.M., Turner, N.C.: Osmotic adjustment in leaves of sorghum in response to water deficits.-Plant Physiol. 61: 122–126, 1978.

    PubMed  CAS  Google Scholar 

  • Jones, R.J., Mansfield, T.A.: Effects of abscisic acid and its esters on stomatal aperture and the transpiration ratio.-Physiol. Plant. 26: 321–327, 1972.

    Article  CAS  Google Scholar 

  • Kappen, L., Haeger, S.: Stomatal responses of Tradescantia albiflora to changing air humidity in light and in darkness.-J. exp. Bot. 42: 979–986, 1991.

    Google Scholar 

  • Kaufmann, M.R.: Leaf conductance as a function of photosynthetic photon flux density and absolute humidity difference from leaf to air.-Plant Physiol. 69: 1018–1022, 1982.

    PubMed  CAS  Google Scholar 

  • Kawano, K.: Harvest index and evolution of major food crop cultivars in the tropics.-Euphytica 46: 195–202, 1990.

    Article  Google Scholar 

  • Kawano, K.: Thirty years of cassava breeding for productivity-biological and social factors for success.-Crop Sci. 43: 1325–1335, 2003.

    Article  Google Scholar 

  • Kawano, K., Daza, P., Amaya, A., Rios, M., Goncalves, W.M.F.: Evaluation of cassava germplasm for productivity.-Crop Sci. 18: 377–382, 1978.

    Article  Google Scholar 

  • Kirkham, M.B.: Principles of Soil and Plant Water Relations.-Elsevier Academic Press, Amsterdam 2005.

    Google Scholar 

  • Körner, C.: Humidity responses in forest trees: precautions in thermal scanning surveys.-Arch. Met. Geoph. Bioclimatol. B 36: 83–98, 1985.

    Article  Google Scholar 

  • Körner, C., Bannister, P.: Stomatal responses to humidity in Nothofagus menziesii.-New Zeal. J. Bot. 23: 425–429, 1985.

    Google Scholar 

  • Körner, C., Cochrane, P.M.: Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevation gradient.-Oecologia 66: 443–455, 1985.

    Article  Google Scholar 

  • Kramer, P.J.: Water Relations of Plants.-Academic Press, New York 1983.

    Google Scholar 

  • Ku, M.S.B., Monson, R.K., Littlejohn, R.O., Jr., Nakamoto, H., Fisher, D.B., Edwards, G.E.: Photosynthetic characteristics of C3-C4 intermediate Flaveria species. 1. Leaf anatomy, photosynthetic responses to O2 and CO2, and activity of key enzymes in the C3 and C4 pathways.-Plant Physiol. 71: 944–948, 1983.

    PubMed  CAS  Google Scholar 

  • Laetsch, W.M.: The C4 syndrome: a structural analysis.-Annu. Rev. Plant Physiol. 25: 27–52, 1974.

    Article  CAS  Google Scholar 

  • Lange, O.L., Lösch, R., Schulze, E.-D., Kappen, L.: Responses of stomata to changes in humidity.-Planta 100: 76–86, 1971.

    Article  Google Scholar 

  • Lenis, J.I., Calle, F., Jaramillo, G., Perez, J.C., Ceballos, H., Cock, J.H.: Leaf retention and cassava productivity.-Field Crops Res. 95: 126–134, 2006.

    Article  Google Scholar 

  • Leverenz, J.W.: Photosynthesis and transpiration in large forest-grown Douglas-fir: diurnal variation.-Can. J. Bot. 59: 349–356, 1981.

    Google Scholar 

  • López, Y., Vélez, W., El-Sharkawy, M., Mayer, J.E.: Biochemical characterization of PEPC from cassava: a preliminary report.-In: Roca, W.M., Thro, A.M. (ed.): Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network. Pp. 340–343. Centro Internacional de Agricultura Tropical, Cali 1993.

    Google Scholar 

  • Lösch, R.: Responses of stomata to environmental factors-experiments with isolated epidermal strips of Polypodium vulgare I. Temperature and humidity.-Oecologia 29: 85–97, 1977.

    Article  Google Scholar 

  • Lösch, R.: Stomatal responses to changes in air humidity.-In: Sen, D.N., Chawan, D.D., Bansal, R.P. (ed.): Structure, Function and Ecology of Stomata. Pp. 189–216. Bishen Singh Mahendra Pal Singh, Dehra Dun 1979.

    Google Scholar 

  • Lösch, R., Schenk, B.: Humidity responses of stomata and potassium content of guard cells.-J. exp. Bot. 29: 781–787, 1978.

    Google Scholar 

  • Lösch, R., Tenhunen, J.D.: Stomatal responses to humidity-phenomenon and mechanism.-In: Jarvis, P.G., Mansfield, T.A. (ed.): Stomatal Physiology. Pp. 137–161. Cambridge University Press, Cambridge-London-New York-New Rochelle-Melbourne-Sydney 1981.

    Google Scholar 

  • Ludlow, M.M., Ibaraki, K.: Stomatal control of water loss in siratro (Macroptilium atropurpureum (DC) Urb.), a tropical pasture legume.-Ann. Bot. 43: 639–647, 1979.

    Google Scholar 

  • Mahon, J.D., Lowe, S.B., Hunt, L.A.: Variation in the rate of photosynthetic CO2 uptake in cassava cultivars and related species of Manihot.-Photosynthetica 11: 131–138, 1977a.

    CAS  Google Scholar 

  • Mahon, J.D., Lowe, S.B., Hunt, L.A., Thiagarajah, M.: Environmental effects on photosynthesis and transpiration in attached leaves of cassava (Manihot esculenta Crantz).-Photosynthetica 11: 121–130, 1977b.

    CAS  Google Scholar 

  • Maier-Maercker, U.: ’Peristomatal transpiration’ and stomatal movement: A controversial view. I. Additional proof of peristomatal transpiration by hygrophotography and a comprehensive discussion in the light of recent results.-Z. Pflanzenphysiol. 91: 25–43, 1979a.

    Google Scholar 

  • Maier-Maercker, U.: “Peristomatal transpiration” and stomatal movement: A controversial view. II. Observation of stomatal movements under different conditions of water supply and demand.-Z. Pflanzenphysiol. 91: 157–172, 1979b.

    Google Scholar 

  • Maier-Maercker, U.: The role of peristomatal transpiration in the mechanism of stomatal movement.-Plant Cell Environ. 6: 369–380, 1983.

    Article  Google Scholar 

  • McCree, K.J.: Whole-plant carbon balance during osmotic adjustment to drought and salinity stress.-Aust. J. Plant Physiol. 13: 33–43, 1986.

    Google Scholar 

  • Meidner, H.: The minimum intercellular-space CO2 concentration (Γ) of maize leaves and its influence on stomatal movements.-J. exp. Bot. 13: 284–293, 1962.

    CAS  Google Scholar 

  • Meidner, H.: Water vapour loss from a physical model of a substomatal cavity.-J. exp. Bot. 27: 691–694, 1976.

    Google Scholar 

  • Meidner, H., Mansfield, T.A.: Physiology of Stomata.-McGraw-Hill, London 1968.

    Google Scholar 

  • Meinzer, F.C.: The effect of vapor pressure on stomatal control of gas exchange in Douglas fir (Pseudotsuga menziesii) saplings.-Oecologia 54: 236–242, 1982.

    Article  Google Scholar 

  • Morgan, J.M.: Osmoregulation and water stress in higher plants.-Annu. Rev. Plant Physiol. 35: 299–319, 1984.

    Article  Google Scholar 

  • Moss, D.N.: The limiting carbon dioxide concentration for photosynthesis.-Nature 193: 587, 1962.

    Article  PubMed  CAS  Google Scholar 

  • Moss, D.N., Musgrave, R.B.: Photosynthesis and crop production.-Adv. Agron. 23: 317–336, 1971.

    Google Scholar 

  • Mott, K.A., Gibson, A.C., O’Leary, J.W.: The adaptive significance of amphistomatic leaves.-Plant Cell Environ. 5: 455–460, 1982.

    Article  Google Scholar 

  • Mott, K.A., O’Leary, J.W.: Stomatal behavior and CO2 exchange characteristics in amphistomatous leaves.-Plant Physiol. 74: 47–51, 1984.

    PubMed  CAS  Google Scholar 

  • Nassar, N.M.A.: Genetic variation of wild Manihot species native to Brazil and its potential for cassava improvement.-Field Crops Res. 13: 177–184, 1986.

    Article  Google Scholar 

  • Neales, T.F., Incoll, L.D.: The control of leaf photosynthesis rate by the level of assimilate concentration in the leaf: a review of the hypothesis.-Bot. Rev. 34: 107–125, 1968.

    Article  Google Scholar 

  • Nijholt, J.A.: Opname van voedingsstoffen uit den bodem bij cassava. [Absorption of nutrients from the soil by a cassava crop.]-Buitenzorg. Algem. Proefstation landbouw. Korte Mededeeel. No. 15. 1935.

  • Nobel, P.S.: Photosynthetic rates of sun versus shade leaves of Hyptis emoryi Torr.-Plant Physiol. 58: 218–223, 1976.

    PubMed  CAS  Google Scholar 

  • Nobel, P.S.: Leaf anatomy and water use efficiency.-In: Turner, N.C., Kramer, P.J. (ed.): Adaptation of Plants to Water and High Temperature Stress. Pp. 43–55. John Wiley & Sons, New York-Chichester-Brisbane-Toronto 1980.

    Google Scholar 

  • Nobel, P.S., Hartsock, T.L.: Development of leaf thickness for Plectranthus parviflorus.-Influence of photosynthetically active radiation.-Physiol. Plant. 51: 163–166, 1981.

    Article  Google Scholar 

  • North, C.: A technique for measuring structural features of plant epidermis using cellulose acetate films.-Nature 176: 1186–1187, 1956.

    Article  Google Scholar 

  • Nösberger, J., Humphries, E.C.: The influence of removing tubers on dry-matter production and net assimilation rate of potato plants.-Ann. Bot. 29: 579–588, 1965.

    Google Scholar 

  • Okogbenin, E., Ekanayake, I.J., Porto, M.C.M.: Genotypic variability in adaptation responses of cassava to drought stress in the Sudan Savanna zone of Nigeria.-J. Agron. Crop Sci. 189: 376–389, 2003.

    Article  Google Scholar 

  • Palta, J.A.: Influence of water deficits on gas-exchange and the leaf area development of cassava cultivars.-J. exp. Bot. 35: 1441–1449, 1984.

    Google Scholar 

  • Parkhurst, D.F.: The adaptive significance of stomatal occurrence on one or both surfaces of leaves.-J. Ecol. 66: 367–383, 1978.

    Article  Google Scholar 

  • Paul, K., Yeoh, H.-H.: K m values of ribulose-1,5-bisphosphate carboxylase of cassava cultivars.-Phytochemistry 26: 1965–1967, 1987.

    Article  CAS  Google Scholar 

  • Paul, K., Yeoh, H.-H.: Characteristics of ribulose 1,5-bisphosphate carboxylase from cassava leaves.-Plant Physiol. Biochem. 26: 615–618, 1988.

    CAS  Google Scholar 

  • Pellet, D., El-Sharkawy, M.A.: Cassava varietal response to phosphorus fertilization. I. Yield, biomass and gas exchange.-Field Crops Res. 35: 1–11, 1993a.

    Article  Google Scholar 

  • Pellet, D., El-Sharkawy, M.A.: Cassava varietal response to phosphorus fertilization. II. Phosphorus uptake and use efficiency.-Field Crops Res. 35: 13–20, 1993b.

    Article  Google Scholar 

  • Pellet, D., El-Sharkawy, M.A.: Sink source relations in cassava: effects of reciprocal grafting on yield and leaf photosynthesis.-Exp. Agr. 30: 359–367, 1994.

    Google Scholar 

  • Pellet, D., El-Sharkawy, M.A.: Cassava varietal response to fertilization: growth dynamics and implications for cropping sustainability.-Exp. Agr. 33: 353–365, 1997.

    Article  Google Scholar 

  • Pereira, J.F.: Fisiologia de la Yuca (Manihot esculenta Crantz). [Physiology of Cassava (Manihot esculenta Crantz).]-Universidad de Oriente, Jusepin, Monagas 1977. [In Spanish.]

    Google Scholar 

  • Pettigrew, W.T., Hesketh, J.D., Peters, D.B., Woolley, J.T.: A vapor pressure deficit effect on crop canopy photosynthesis.-Photosynth. Res. 24: 27–34, 1990.

    Article  Google Scholar 

  • Porto, M.C.M.: Physiological Mechanisms of Drought Tolerance in Cassava (Manihot esculenta Crantz).-Ph.D. Thesis. University of Arizona, Tucson 1983.

    Google Scholar 

  • Pospíšilová, J., Solárová, J.: Environmental and biological control of diffusive conductances of adaxial and abaxial leaf epidermes.-Photosynthetica 14: 90–127, 1980.

    Google Scholar 

  • Poulton, J.E.: Cyanogenesis in plants.-Plant Physiol. 94: 401–405, 1990.

    PubMed  CAS  Google Scholar 

  • Radin, J.W.: Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants.-Plant Physiol. 76: 392–394, 1984.

    PubMed  CAS  Google Scholar 

  • Radin, J.W., Parker, L.L., Guinn, G.: Water relations of cotton plants under nitrogen deficiency. V. Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid.-Plant Physiol. 70: 1066–1070, 1982.

    PubMed  CAS  Google Scholar 

  • Rawson, H.M., Begg, J.E., Woodward, R.G.: The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species.-Planta 134: 5–10, 1977.

    Article  CAS  Google Scholar 

  • Riis, L.: The Subterranean Burrowing Bug Cyrtomenus bergi Froeschner, an Increasing Pest in Tropical Latin America: Behavioural Studies, Population Fluctuations, Botanical Control, With Special Reference to Cassava.-MSc. Thesis. Royal Veterinary and Agricultural University, Copenhagen 1990.

    Google Scholar 

  • Riis, L.: Behaviour and Population Growth of the Burrower Bug, Cyrtomenus bergi Froeschner: Effects of Host Plants and Abiotic Factors.-Ph.D. Thesis. Royal Veterinary Agricultural University, Copenhagen 1997.

    Google Scholar 

  • Riis, L., Bellotti, A.C., Vargas, O.: The response of a polyphagous pest (Cyrtomenus bergi Froeschner) to cassava cultivars with variable HCN content in root parenchyma and peel.-In: Proceedings of the Second International Scientific Meeting of the Cassava Biotechnology Network. Pp. 501–509. CIAT, Cali 1995.

    Google Scholar 

  • Romanoff, S., Lynam, J.: Cassava and African food security: some ethnographic examples.-Ecol. Food Nutr. 27: 29–41, 1992.

    Article  Google Scholar 

  • Rosling, H.: Measuring effects in humans of dietary cyanide exposure from cassava.-Acta Horticult. 375: 271–283, 1994.

    CAS  Google Scholar 

  • Ruppenthal, M., Leihner, D.E., Steinmüller, N., El-Sharkawy, M.A.: Losses of organic matter and nutrients by water erosion in cassava-based cropping systems.-Exp. Agr. 33: 487–498, 1997.

    Article  Google Scholar 

  • Rylott, E.L., Metzlaff, K., Rawthorne, S.: Developmental and environmental effects on the expression of the C3-C4 intermediate phenotypes in Moricandia arvensis.-Plant Physiol. 118: 1277–1284, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, E.-D.: Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil.-Annu. Rev. Plant Physiol. 37: 247–274, 1986.

    Article  Google Scholar 

  • Schulze, E.-D., Hall, A.E.: Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments.-In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed.): Physiological Plant Ecology II. Pp. 181–230. Springer-Verlag, Berlin-Heidelberg-New York 1982.

    Google Scholar 

  • Schulze, E.-D., Lange, O.L., Buschbom, U., Kappen, L., Evenari, M.: Stomatal responses to changes in humidity in plants growing in the desert.-Planta 108: 259–270, 1972.

    Article  Google Scholar 

  • Šesták, Z. (ed.): Photosynthesis During Leaf Development.-Academia, Praha; Dr W. Junk Publ., Dordrecht-Boston-Lancaster 1985.

    Google Scholar 

  • Seybold, W.D.: Ergebnisse und Probleme pflanzlicher Transpirationsanalysen.-Jahresh. Heidelberger Akad. Wiss. 6: 5–8, 1961/1962.

    Google Scholar 

  • Shantz, H.L., Piemeisel, L.N.: The water requirements of plants at Akron, CO.-J. agr. Res. (Washington) 34: 1093–1190, 1927.

    Google Scholar 

  • Sheriff, D.W.: Where is humidity sensed when stomata respond to it directly?-Ann. Bot. 41: 1083–1084, 1977.

    Google Scholar 

  • Sheriff, D.W.: Stomatal aperture and the sensing of the environment by guard cells.-Plant Cell Environ. 2: 15–22, 1979.

    Article  Google Scholar 

  • Sheriff, D.W.: Epidermal transpiration and stomatal responses to humidity: some hypothesis explored.-Plant Cell Environ. 7: 669–677, 1984.

    Google Scholar 

  • Sheriff, D.W., Kaye, P.E.: Responses of diffusive conductance to humidity in a drought avoiding and a drought resistant (in terms of stomatal response) legume.-Ann. Bot. 41: 653–655, 1977.

    Google Scholar 

  • Slavík, B.: Determination of stomatal aperture.-In: Šesták, Z., Čatský, J., Jarvis, P.G. (ed.): Plant Photosynthetic Production: Manual of Methods. Pp. 556–563. Dr W. Junk N.V. Publ., The Hague 1971.

    Google Scholar 

  • Solárová, J., Pospíšilová, J.: Diffusive conductances of adaxial and abaxial epidermis: 1. Response to photon flux density during development of water stress in primary bean leaves.-Biol. Plant. 21: 446–451, 1979.

    Google Scholar 

  • Stanhill, G.: Water use efficiency.-Adv. Agron. 39: 53–85, 1986.

    Google Scholar 

  • Taybi, T., Cushman, J.C.: Signaling events leading to Crassulacean acid metabolism induction in the common ice plant.-Plant Physiol. 121: 545–555, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Tazaki, T., Ishihara, K., Ushijima, T.: Influence of water stress on the photosynthesis and productivity of plants in humid areas.-In: Turner, N.C., Kramer, P.J. (ed.): Adaptation of Plants to Water and High Temperature Stress. Pp. 309–321. J. Wiley & Sons, New York 1980.

    Google Scholar 

  • Tenjo, F.A., Mayer, J.E., El-Sharkawy, M.: Cloning and sequence analysis of PEP-carboxylase from cassava.-In: Roca, W.M., Thro, A.M. (ed.): Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network. Pp. 331–334. Centro Internacional de Agricultura Tropical, Cali 1993.

    Google Scholar 

  • Thoday, D.: Stomatal movement and epidermal water-content.-Nature 141: 164, 1938.

    Google Scholar 

  • Thorne, G.N., Evans, A.F.: Influence of tops and roots on net assimilation rate of sugar-beet and spinach beet and grafts between them.-Ann. Bot. 28: 499–508, 1964.

    CAS  Google Scholar 

  • Tibbitts, T.W.: Humidity and plants.-BioScience 29: 358–363, 1979.

    Article  Google Scholar 

  • Tichá, I.: Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes.-Photosynthetica 16: 375–471, 1982.

    Google Scholar 

  • Tinoco-Ojanguren, C., Pearcy, R.W.: Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. I. VPD effects on the transient stomatal response to lightflecks.-Oecologia 94: 388–394, 1993.

    Article  Google Scholar 

  • Tregunna, E.B., Krotkov, G., Nelson, C.D.: Further evidence on the effects of light on respiration during photosynthesis.-Can. J. Bot. 42: 989–997, 1964.

    CAS  Google Scholar 

  • Tscherning, K., Leihner, D.E., Hilger, T.H., Müller-Sämann, K.M., El-Sharkawy, M.A.: Grass barriers in cassava hillside cultivation: rooting patterns and root growth dynamics.-Field Crops Res. 43: 131–140, 1995.

    Article  Google Scholar 

  • Turner, N.C.: Adaptation to water deficits: a changing perspective.-Aust. J. Plant Physiol. 13: 175–190, 1986.

    Google Scholar 

  • Turner, N.C., Begg, J.E., Tonnet, M.L.: Osmotic adjustment of sorghum and sunflower crops in response to water deficits and its influence on the water potential at which stomata close.-Aust. J. Plant Physiol. 5: 597–608, 1978.

    Article  CAS  Google Scholar 

  • Tyree, M.T., Yianoulis, P.: The site of water evaporation from sub-stomatal cavities, liquid path resistance and hydroactive stomatal closure.-Ann. Bot. 46: 175–193, 1980.

    Google Scholar 

  • Ueno, O.: Environmental regulation of C3 and C4 differentiation in the amphibious sedge Eleocharis vivipara.-Plant Physiol. 127: 1524–1532, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ueno, O., Agarie, S.: The intercellular distribution of glycine decarboxylase in leaves of cassava in relation to the photosynthetic mode and leaf anatomy.-Jap. J. Crop Sci. 66: 268–278, 1997.

    CAS  Google Scholar 

  • van Oirschot, Q.E.A., O’Brien, G.M., Dufour, D., El-Sharkawy, M.A., Mesa, E.: The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics.-J. Sci. Food Agr. 80: 1866–1873, 2000.

    Article  Google Scholar 

  • van Schoonhoven, A.: Thrips on cassava: economic importance, sources and mechanisms of resistance.-In: Brekelbaum, T., Bellotti, A., Lozano, J.C. (ed.): Proceedings Cassava Protection Workshop. Pp. 177–180. CIAT, Cali 1978.

    Google Scholar 

  • Verteuil, J. de: Cassava experiments.-Bull. Dep. Agr. Trinidad Tobago 16: 18–21, 1917.

    Google Scholar 

  • Verteuil, J. de: Cassava experiments 1916–1918.-Bull. Dep. Agr. Trinidad Tobago 17: 193–198, 1918.

    Google Scholar 

  • Volk, R.J., Jackson, W.A.: Photorespiratory phenomena in maize. Oxygen uptake, isotope discrimination, and carbon dioxide efflux.-Plant Physiol. 49: 218–223, 1972.

    PubMed  CAS  Google Scholar 

  • Walton, D.C.: Biochemistry and physiology of abscisic acid.-Annu. Rev. Plant Physiol. 31: 453–489, 1980.

    Article  CAS  Google Scholar 

  • Ward, D.A., Bunce, J.A.: Novel evidence for a lack of water vapour saturation within the intercellular airspace of turgid leaves of mesophytic species.-J. exp. Bot. 37: 504–516, 1986.

    Google Scholar 

  • Wardlaw, I.F.: The control of carbon partitioning in plants.-New Phytol. 116: 341–381, 1990.

    Article  CAS  Google Scholar 

  • Westby, A.: Cassava utilization, storage and small-scale processing.-In: Hillocks, R.J., Thresh, J.M., Bellotti, A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 281–300. CABI Publ., New York 2002.

    Google Scholar 

  • Wilson, W.M.: Cassava (Manihot esculenta Crantz), cyanogenic potential, and predation in Northwestern Amazonia: The Tukanoan perspective.-Human Ecol. 31: 403–416, 2003.

    Article  Google Scholar 

  • Wilson, W.M., Dufour, D.L.: Why bitter cassava? Productivity of bitter and sweet cassava in a Tukanoan Indian settlement in Northwest Amazon.-J. econ. Bot. 56: 49–57, 2002.

    Article  Google Scholar 

  • Wortman, S.: Beyond the Bottom Line.-Rockefeller Foundation, New York 1981.

    Google Scholar 

  • Zeevaart, J.A.D., Creelman, R.A.: Metabolism and physiology of abscisic acid.-Annu. Rev. Plant Physiol. Plant mol. Biol. 39: 439–473, 1988.

    Article  CAS  Google Scholar 

  • Zeiger, E.: The biology of stomatal guard cells.-Annu. Rev. Plant Physiol. 34: 441–475, 1983.

    Article  CAS  Google Scholar 

  • Zelitch, I.: Biochemical control of stomatal opening in leaves.-Proc. nat. Acad. Sci. USA 47: 1423–1433, 1962.

    Article  Google Scholar 

  • Zhang, J., Davies, W.J.: Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil.-Plant Cell Environ. 12: 73–81, 1989.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11099-007-0067-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sharkawy, M. International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica 44, 481–512 (2006). https://doi.org/10.1007/s11099-006-0063-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-006-0063-0

Additional key words

Navigation