Skip to main content
Log in

Photoinhibition and xanthophyll cycle activity in bayberry (Myrica rubra) leaves induced by high irradiance

  • Original Papers
  • Published:
Photosynthetica

Abstract

The effect of high irradiance (HI, photosynthetically active photon flux density of 1 300 µmol m−2 s−1) on net photosynthetic rate (P N), chlorophyll fluorescence parameters, and xanthophyll cycle components were studied in fruit tree bayberry leaves. HI induced the photoinhibition and inactivation of photosystem 2 (PS2) reaction centres (RCs), which was characterized by decreased P N, maximum yield of fluorescence after dark adaptation (Fm), photochemical efficiency of PS2 (Fv/Fm) and quantum yield of PS2 (ΦPS2), and increased reduction state of QA (1-qP) and non-photochemical quenching (NPQ). Initial fluorescence (F0) showed a decrease after the first 2 h, and subsequently increased from the third hour exposure to HI. Furthermore, a greater increase in the ratio (Fi-F0)/(Fp-F0) which is an expression of the proportion of the QB non-reducing PS2 centres, whereas a remarked decrease in the slope of Fi to Fp which represents the rate of QA reduction was observed in leaves after HI exposure. Additionally, HI caused an increase in the pool size of the xanthophyll cycle pigments and sustained elevated contents of zeaxanthin (Z), antheraxanthin (A), and de-epoxidation state (DES) at the end of the irradiation period. During HI, decreased Fm, Fv/Fm, ΦPS2, NPQ, slope of Fi to Fp, V+A+Z, and DES, and increased F0, 1-qP, ratio (Fi-F0)/(Fp-F0), and V were observed in dithiothreitol (DTT)-fed leaves compared to control ones under the same conditions. Hence photoinhibition caused by HI in bayberry was probably attributed to inactivation of PS2 RCs, and photoprotection from photodamage were mainly related to the xanthophyll cycle-dependent heat dissipation in excess photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

antheraxanthin

Ca:

ambient CO2 concentration

Ci:

intercellular CO2 concentration

Chl:

chlorophyll

DES:

deepoxidation state of the xanthophyll cycle pigments

DTT:

dithiothreitol

Fm:

maximum yield of fluorescence after dark adaptation

F0 :

initial fluorescence

Fv/Fm :

maximum photochemical efficiency of PS2 with all reaction centres open

NPQ:

non-photochemical quenching

PFD:

photon flux density

P N :

net photosynthetic rate

PS2:

photosystem 2

RC:

reaction centre

V:

violaxanthin

Z:

zeaxanthin

1-qP :

reduction state of QA

ΦPS2 :

quantum yield of PS2

References

  • Adir, N., Zer, H., Shochat, S., Ohad, I.: Photoinhibition — a historical perspective.-Photosynth. Res. 76: 343–370, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J.M., Aro, E.-M.: Grana stacking and protection of Photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: An hypothesis.-Photosynth. Res. 41: 315–326, 1994.

    Article  CAS  Google Scholar 

  • Aro, E.M., Virgin, I., Andersson, B.: Photoinhibition of photosystem II. Inactivation, protein damage and turnover.-Biochim. biophys. Acta 1143: 113–134, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Bertamini, M., Nedunchezhian, N.: Photoinhibition of photosynthesis in mature and young leaves of grapevine.-Plant Sci. 164: 635–644, 2003.

    Article  CAS  Google Scholar 

  • Campbell, D., Hurry, V., Clarke, A.K., Gustafsson, P., Öquist, G.: Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation.-Microbiol. mol. Biol. Rev. 62: 667–683, 1998.

    PubMed  CAS  Google Scholar 

  • Chang, S.-H., Bugos, R.C., Sun, W.-H., Yamamoto, H.Y.: Antisense suppression of violaxanthin de-epoxidase in tobacco does not affect plant performance in controlled growth conditions.-Photosynth. Res. 64: 95–103, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.Z., Murchie, E.H., Hubbart, S., Horton, P., Peng, S.: Effects of season-dependent irradiance levels and nitrogen-deficiency on photosynthesis and photoinhibition in field-grown rice (Oryza sativa).-Physiol. Plant. 117: 343–351, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B.: Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin.-Biochim. biophys. Acta 1020: 1–24, 1990.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 599–626, 1992.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III: Xanthophyll cycle and light stress in nature: Uniform response to excess direct sunlight among higher plant species.-Planta 198: 460–470, 1996.

    Article  CAS  Google Scholar 

  • Eskling, M., Arvidsson, P.-O., Åkerlund, H.-E.: The xanthophyll cycle, its regulation and components.-Physiol. Plant. 100: 806–816, 1997.

    Article  CAS  Google Scholar 

  • Estelle, M.: Proteases and cellular regulation in plants.-Curr. Opin. Plant Biol. 4: 254–260, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C.H., Lescure, J.-C., Lefebvre, C., Morot-Gaudry, J.-F., Vincentz, M., Vaucheret, H.: Adaptations of photosynthetic electron transport, carbon assimilation, and carbon partitioning in transgenic Nicotiana plumbaginifolia plants to changes in nitrate reductase activity.-Plant Physiol. 104: 171–178, 1994.

    PubMed  CAS  Google Scholar 

  • Genty, B., Briantais, J.-M., Baker, N.R.: Relative quantum efficiencies of the two photosystems of leaves in photo-respiratory and non-photorespiratory conditions.-Plant Physiol. Biochem. 28: 1–10, 1989.

    Google Scholar 

  • Govindjee: Sixty-three years since Kautsky: Chlorophyll a fluorescence.-Aust. J. Plant Physiol. 22: 131–160, 1995.

    Article  CAS  Google Scholar 

  • Guo, D.P., Guo, Y.P., Zhao, J.P., Liu, H., Peng, Y., Wang, Q.M., Chen, J.S., Rao, G.Z.: Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus infection.-Plant Sci. 168: 57–63, 2005.

    Article  CAS  Google Scholar 

  • Guo, L.W., Xu, D.Q., Shen, Y.G.: [Photoinhibition of photosynthesis without net loss of D1 protein in wheat leaves under field conditions.]-Acta bot. sin. 38: 196–202, 1996. [In Chin.]

    CAS  Google Scholar 

  • Guo, Y.P., Song, L.L., Xu, K., Zhang, L.C.: [Changes of energy distribution in reaction centers of Citrus unshiu leaf photosystem under different light intensities.]-Chin. J. appl. Ecol. 15: 2087–2090, 2004. [In Chin.]

    CAS  Google Scholar 

  • Guo, Y.P., Zhang, L.C., Hong, S.S., Shen, Y.G.: [Photoinhibition of photosynthesis in Satsuma mandarin leaves.]-Acta hort. sin. 26: 281–286, 1999. [In Chin.]

    Google Scholar 

  • Harel, Y., Ohad, I., Kaplan, A.: Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust.-Plant Physiol. 136: 3070–3079, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hideg, E., Murata, N.: The irreversible photoinhibition of the photosystem 2 complex in leaves of Vicia faba under strong light.-Plant Sci. 130: 151–158, 1997.

    Article  CAS  Google Scholar 

  • Hong, S.-S., Xu, D.-Q.: Light-induced increase in initial chlorophyll fluorescence Fo level and the reversible inactivation of PS II reaction centers in soybean leaves.-Photosynth. Res. 61: 269–280, 1999.

    Article  CAS  Google Scholar 

  • Kang, Z.X., Luo, W.J., Lu, A.H., Yang, Z.J., Chen, Y.W.: [On the climatic regionalization for growing Myrica rubra in China.]-J. Fruit Sci. 19: 118–122, 2002. [In Chin.]

    Google Scholar 

  • Kornyeyev, D., Holaday, S., Logan, B.: Predicting the extent of photosystem 2 photoinactivation using chlorophyll a fluorescence parameters measured during illumination.-Plant Cell Physiol. 44: 1064–1070, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Krause, G.H., Virgo, A., Winter, K.: High susceptibility to photoinhibition of young leaves of tropical forest trees.-Planta 197: 583–591, 1995.

    Article  CAS  Google Scholar 

  • Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Laisk, A., Oja, V.: Electron transport through photosystem 2 in leaves during light pulses: acceptor resistance increases with nonphotochemical excitation quenching.-Biochim. biophys. Acta 1460: 255–267, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q.: Practices for High Yield Cultivation of Bayberry.-China Agriculture Press, Beijing 1998.

    Google Scholar 

  • Long, S.P., Humphries, S., Falkowski, P.G.: Photoinhibition of photosynthesis in nature.-Annu. Rev. Plant Physiol. Plant mol. Biol. 45: 633–662, 1994.

    Article  CAS  Google Scholar 

  • Lu, C., Qiu, N., Wang, B., Zhang, J.: Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa.-J. exp. Bot. 54: 851–860, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Miyake, C., Okamura, M.: Cyclic electron flow within PS2 protects PS2 from its photoinhibition in thylakoid membranes from spinach chloroplasts.-Plant Cell Physiol. 44: 457–462, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Morales, F., Abadía, A., Belkhodja, R., Abadía, J.: Iron deficiency-induced changes in the photosynthetic pigment composition of field-grown pear (Pyrus communis L.) leaves.-Plant Cell Environ. 17: 1153–1160, 1994.

    Article  CAS  Google Scholar 

  • Müller, P., Li, X.P., Niyogi, K.K.: Non-photochemical quenching. A response to excess light energy.-Plant Physiol. 125: 1558–1566, 2001.

    Article  PubMed  Google Scholar 

  • Murchie, E.H., Horton, P.: Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference.-Plant Cell Environ. 20: 438–448, 1997.

    Article  Google Scholar 

  • Niyogi, K.K.: Safety valves for photosynthesis.-Curr. Opin. Plant Biol. 3: 455–460, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Niyogi, K.K., Grossman, A.R., Björkman, O.: Arabidopsis mutants define a central role of the xanthophyll cycle in the regulation of photosynthetic energy conversion.-Plant Cell 10: 1121–1134, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Ögren, E.: Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching components.-Planta 184: 538–544, 1991.

    Article  Google Scholar 

  • Pandey, D.M., Kim, K.H., Kang, K.H., Yeo, U.D.: High irradiance effects on the xanthophyll cycle pigments and the activity of violaxanthin de-epoxidase in soybean callus.-Photosynthetica 42: 153–156, 2004.

    Article  CAS  Google Scholar 

  • Rintamaki, E., Salo, R., Lehtonen, E., Aro, E.M.: Regulation of D1 protein degradation during photoinhibition of photosystem 2 in vivo: phosphorylation of D1 protein in various plant groups.-Planta 195: 379–386, 1995.

    CAS  Google Scholar 

  • Song, L.L., Guo, Y.P., Xu, K.: [Protective mechanism in photo-inhibition of photosynthesis in Citrus unshiu leaves.]-Chin. J. appl. Ecol. 14: 47–51, 2003. [In Chin.]

    CAS  Google Scholar 

  • Špundová, M., Strzalka, K., Nauš, J.: Xanthophyll cycle activity in detached barley leaves senescing under dark and light.-Photosynthetica 43: 117–124, 2005.

    Article  CAS  Google Scholar 

  • Srivastava, A., Guisse, B., Greppin, H., Strasser, R.J.: Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP.-Biochim. biophys. Acta 1320: 95–106, 1997.

    Article  CAS  Google Scholar 

  • Strasser, R.J., Srivastava, A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.-Photochem. Photobiol. 61: 32–42, 1995.

    CAS  Google Scholar 

  • Sun, W.-H., Verhoeven, A.S., Bugos, R.C., Yamamoto, H.Y.: Suppression of zeaxanthin formation does not reduce photosynthesis and growth of transgenic tobacco under field conditions.-Photosynth. Res. 67: 41–50, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Vass, I., Styring, S., Hundal, T., Koivuniemi, A., Aro, E.-M., Andersson, B.: Reversible and irreversible intermediates during photoinhibition of photosystem II: Stable reduced QA species promote chlorophyll triplet formation.-Proc. nat. Acad. Sci. USA 89: 1408–1412, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Vavilin, D.V., Tyystjärvi, E., Aro, E.-M.: In search of a reversible stage of photoinhibition in a higher plant: No changes in the amount of functional Photosystem II accompany relaxation of variable fluorescence after exposure of lincomycin-treated Cucurbita pepo leaves to high light.-Photosynth. Res. 45: 239–247, 1995.

    Article  CAS  Google Scholar 

  • Wang, B.P., Zheng, Y.P., Li, Z.J., Yu, W.W.: [Utilization of Myrica rubra resources in Zhejiang and their ecological effects.]-J. Zhejiang Forestry College 18: 155–160, 2001. [In Chin.]

    Google Scholar 

  • Xu, K., Guo, Y.P., Zhang, S.L., Zhang, L.C., Zhang, L.X.: Effect of light quality on photosynthesis and chlorophyll fluorescence in strawberry leaves.-Agr. Sci. Chin. 3: 678–686, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. -P. Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y.P., Guo, D.P., Zhou, H.F. et al. Photoinhibition and xanthophyll cycle activity in bayberry (Myrica rubra) leaves induced by high irradiance. Photosynthetica 44, 439–446 (2006). https://doi.org/10.1007/s11099-006-0048-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-006-0048-z

Additional key words

Navigation