Skip to main content
Log in

Measuring Lipolytic Activity to Support Process Improvements to Manage Lipase-Mediated Polysorbate Degradation

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Polysorbates are critical stabilizers in biopharmaceutical protein formulations. However, they may degrade in drug substance (DS) or drug product (DP) during storage. Degradation catalyzed by lipases present in host cell proteins (HCPs) is one suspected root cause. The purpose of this study was to develop an assay to detect lipolytic activity in biopharmaceutical DS and DP formulations.

Methods

The assay is based on the hydrolysis of the lipase substrate 4-methylumbelliferyl oleate to yield the fluorescent product 4-methylumbelliferone.

Results

First, the assay components and their concentrations (buffer salts and pH, solvent and inhibitor Orlistat) were established and optimized using a model lipase (Porcine pancreatic lipase) and cell culture harvest fluid that exhibited lipolytic activity. The assay was then successfully applied and thereby qualified in protein formulations and at lipase concentrations possibly encountered in actual biopharmaceutical DS and DP formulations.

Conclusion

The lipase assay can be used to detect lipolytic activity in intermediate and final DS, for example during process optimization in downstream purification, to better and specifically reduce the level, or deplete, lipases from HCPs. The assay is also suitable to be applied during root cause investigations related to polysorbate degradation in biopharmaceutical DP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

BIS-TRIS:

Bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methan

CCHF :

Cell culture harvest fluid

CHO:

Chinese hamster ovary

DMSO:

Dimethyl sulfoxide

DP:

Drug product

DS:

Drug substance

ELISA :

Enzyme-linked immunosorbent assays

FMA:

Fluorescence micelle assay

HCMB:

High concentration matrix buffer

HCP:

Host cell protein

HPLC:

High performance liquid chromatography

IPA :

Iso-propanol

mAb:

Monoclonal antibody

MeOH:

Methanol

4Mu :

4-Methylumbelliferone

4MuO :

4-Methylumbelliferyl oleate

4 Np :

4-Nitrophenol

NPN :

N-Phenyl-1-naphtylamine

PLBL2:

Phospholipase B-like 2

PPL :

Porcine pancreatic lipase

NEH:

Non enzymatic hydrolysis

PS20:

Polysorbate 20

PS80:

Polysorbate 80

RT:

Room temperature

TRIS:

Tris(hydroxymethyl)aminomethane (commercial abbreviation: Trizma®)

w/v :

Weight to volume ratio

References

  1. Khan TA, Mahler HC, Kishore RS. Key interactions of surfactants in therapeutic protein formulations: a review. Eur J Pharm Biopharm. 2015;97:60–7.

    Article  CAS  PubMed  Google Scholar 

  2. Borisov OV, Ji JA, Wang YJ, Vega F, Ling VT. Toward understanding molecular heterogeneity of polysorbates by application of liquid chromatography-mass spectrometry with computer-aided data analysis. Anal Chem. 2011;83:3934–42.

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Hewitt D, Lentz YK, Ji JA, Zhang TY, Zhang K. Characterization and stability study of polysorbate 20 in therapeutic monoclonal antibody formulation by multidimensional ultrahigh-performance liquid chromatography-charged aerosol detection-mass spectrometry. Anal Chem. 2014;86:5150–7.

    Article  CAS  PubMed  Google Scholar 

  4. Doshi N, Demeule B, Yadav S. Understanding particle formation: solubility of free fatty acids as polysorbate 20 degradation byproducts in therapeutic monoclonal antibody formulations. Mol Pharm. 2015;12(11):3792–804.

    Article  CAS  PubMed  Google Scholar 

  5. Ha E, Wang W, Wang YJ. Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci. 2002;91(10):2252–64.

    Article  CAS  PubMed  Google Scholar 

  6. Kishore RS, Kiese S, Fischer S, Pappenberger A, Grauschopf U, Mahler HC. The degradation of polysorbates 20 and 80 and its potential impact on the stability of biotherapeutics. Pharm Res. 2011;28(5):1194–210.

    Article  CAS  PubMed  Google Scholar 

  7. Kiese S, Papppenberger A, Friess W, Mahler HC. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci. 2008;97(10):4347–66.

    Article  CAS  PubMed  Google Scholar 

  8. Singh SK, Mahler HC, Hartman C, Stark CA. Are injection site reactions in monoclonal antibody therapies caused by polysorbate excipient degradants? J Pharm Sci. 2018;107(11):2735–41.

    Article  CAS  PubMed  Google Scholar 

  9. Kishore RS, Pappenberger A, Dauphin IB, Ross A, Buergi B, Staempfli A, et al. Degradation of polysorbates 20 and 80: studies on thermal autoxidation and hydrolysis. J Pharm Sci. 2011;100(2):721–31.

    Article  CAS  PubMed  Google Scholar 

  10. Dixit N, Salamat-Miller N, Salinas PA, Taylor KD. Residual host cell protein promotes polysorbate 20 degradation in a sulfatase drug product leading to free fatty acid particles. J Pharm Sci. 2016;105:1657–66.

    Article  CAS  PubMed  Google Scholar 

  11. LaBrenz S. Ester hydrolysis of polysorbate 80 in mAb drug product: evidence in support of the hypothesized risk after the observation of visible particulate in mAb formulations. J Pharm Sci. 2014;103:2268–77.

    Article  CAS  PubMed  Google Scholar 

  12. Hall T, Sandefur SL, Frye CC, Tuley TL, Huang L. Polysorbates 20 and 80 degradation by group XV lysosomal phospholipase A2 isomer X1 in monoclonal antibody formulations. J Pharm Sci. 2016;105:1633–42.

    Article  CAS  PubMed  Google Scholar 

  13. Chiu J, Valente KN, Levy NE, Min L, Lenhoff AM, Lee KH. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnol Bioeng. 2017;114(5):1006–15.

    Article  CAS  PubMed  Google Scholar 

  14. Shukla AA, Hubbard B, Tressel T, Guhan S, Low D. Downstream processing of monoclonal antibodies--application of platform approaches. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;848(1):28–39.

    Article  CAS  PubMed  Google Scholar 

  15. Champion K, Madden H, Dougherty J, Shacter E. 2005. Defining your product profile and maintaining control over it, part 2. Bioprocess Int. 2005;9:52–7.

    Google Scholar 

  16. Fischer SK, Cheu M, Peng K, Lowe J, Araujo J, Murray E, et al. Specific immune response to phospholipase B-like 2 protein, a host cell impurity in Lebrikizumab clinical material. AAPS J. 2017;19(1):254–63.

    Article  CAS  PubMed  Google Scholar 

  17. Zottig X, Meddeb-Mouelhi F, Beauregard M. Development of a high-throughput liquid state assay for lipase activity using natural substrates and rhodamine B. Anal Biochem. 2016;496:25–9.

    Article  CAS  PubMed  Google Scholar 

  18. Glogauer A, Martini VP, Faoro H, Couto GH, Müller-Santos M, Monteiro RA, et al. Identification and characterization of a new true lipase isolated through metagenomic approach. Microb Cell Factories. 2011;10:54.

    Article  CAS  Google Scholar 

  19. Young PL, Guk HC, Joon SR. Purification and characterization of Pseudomonas fluorescens SIK W1 lipase expressed in Escherichia coli. Biochim Biophys Acta. 1993;1169(2):156–64.

    Article  Google Scholar 

  20. Rappoport Z (Ed.). CRC Handbook of tables for organic compound identification. 3rd Edition. 1984, CRC press / Taylor and Francis, Boca Raton, FL, USA.

  21. Mabey W, Mill T. Critical review of hydrolysis of organic compounds in water under environmental conditions. J Phys Chem Ref Data. 1978;7(2):383–415.

    Article  CAS  Google Scholar 

  22. Kurihara H, Asami S, Shibata H, Fukami H, Tanaka T. Hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja in lipid-loaded mice. Biol Pharm Bull. 2003;26(3):383–5.

    Article  CAS  PubMed  Google Scholar 

  23. Zhi H, Wang J, Wang S, Wei Y. Fluorescent properties of hymecromone and fluorimetric analysis of hymecromone in compound dantong capsule. J Spectroscopy. 2013; Article ID 147128, 9 pages.

  24. Hadváry P, Sidler W, Meister W, Vetter W, Wolfer H. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J Biol Chem. 1991;266(4):2021–7.

    PubMed  Google Scholar 

  25. Li Y, Zhou G, Li C, Qin D, Qiao W, Chu B. Adsorption and catalytic activity of porcine pancreatic lipase on rod-like SBA-15 mesoporous material. Colloids and surfaces a: Physicochem. Eng. Aspects. 2009;341:79–85.

    Article  CAS  Google Scholar 

  26. Heck AM, Yanovski JA, Calis KA. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy. 2000;20(3):270–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Asler IL, Zehl M, Kovacic F, Müller R, Abramic M, et al. Mass spectrometric evidence of covalently-bound tetrahydrolipstatin at the catalytic serine of Streptomyces rimosus lipase. Biochim Biophys Acta. 1770;2007:163–70.

    Google Scholar 

  28. Lewis DR, Liu DJ. Direct measurement of lipase inhibition by Orlistat using a dissolution linked in vitro assay. Clin Pharmacol Biopharm. 2012;1(3):1–3.

    Article  Google Scholar 

  29. Gupta N, Rathi P, Gupta R. Simplified Para-nitrophenyl palmitate assay for lipases and esterases. Anal Biochem. 2002;311:98–9.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson KA, Goody RS. The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry. 2011;50(39):8264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lowe ME. The triglyceride lipases of the pancreas. J Lipid Res. 2002;43(12):2007–16.

    Article  CAS  PubMed  Google Scholar 

  32. Lookene A, Skottova N, Olivecrona G. Interactions of lipoprotein lipase with the active-site inhibitor tetrahydrolipstatin (Orlistat)R. Eur J Biochem. 1994;222:395–403.

    Article  CAS  PubMed  Google Scholar 

  33. Brito RMM, Vaz WLC. Determination of the critical micelle concentration of surfactants using the fluorescent probe N-phenyl-1-naphthylamine. Anal Biochem. 1986;152(2):250–5.

    Article  CAS  PubMed  Google Scholar 

  34. Khossravi M, Kao YH, Mrsny RJ, Sweeney TD. Analysis methods of polysorbate 20: a new method to assess the stability of polysorbate 20 and established methods that may overlook degraded polysorbate 20. Pharm Res. 2002;19(5):634–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Jahn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahn, M., Zerr, A., Fedorowicz, F.M. et al. Measuring Lipolytic Activity to Support Process Improvements to Manage Lipase-Mediated Polysorbate Degradation. Pharm Res 37, 118 (2020). https://doi.org/10.1007/s11095-020-02812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02812-0

Key Words

Navigation