Skip to main content

Advertisement

Log in

Multicenter-Based Population Pharmacokinetic Analysis of Ciclosporin in Hematopoietic Stem Cell Transplantation Patients

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To explore the contribution of physiological characteristics to variability in ciclosporin pharmacokinetics in hematopoietic stem cell transplantation patients.

Methods

Clinical data from 563 patients were collected from centers in three regions. Ciclosporin concentrations were measured using immunoassays. The patients’ demographics, hematological and biological indicators, coadministered drugs, region, and disease diagnosis were recorded from medical records. Data analysis was performed using NONMEM based on a one-compartment model to describe the pharmacokinetics of ciclosporin. The reliability and stability of the final model were evaluated using bootstrap resampling, goodness-of-fit plots, and prediction-corrected visual predictive checks.

Results

The population estimate of the clearance (CL) was 30.4 L/h, the volume of distribution (V) was 874.0 L and the bioavailability (F) was 81.1%. The between-subject variability in these parameters was 26.3, 68.0, and 110.8%, respectively. Coadministration of fluconazole, itraconazole, or voriconazole decreased CL by 17.6%, 28.4%, and 29.2%, respectively. Females’ CL increased by approximately 12.0%. In addition, CL and V decreased with hematocrit, total protein, and uric acid increase, and CL also decreased with age and aspartate aminotransferase increase. However, CL increased with creatinine clearance increase.

Conclusions

A multicenter-based population pharmacokinetic model of ciclosporin was established. The pharmacokinetics of ciclosporin exhibited discrepancies among different regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request

Abbreviations

CL:

Clearance

CMIA:

Chemiluminescent microparticle immunoassay

CsA:

Ciclosporin

ECLIA:

Electrochemiluminescence immunoassay

EMIT:

Enzyme amplification immunoassay

FFM:

Fat free mass

FOCE:

First-order conditional estimation method

FPIA:

Fluorescence polarization immunoassay

HSCT:

Hematopoietic stem cell transplantation

NFM:

Normal fat mass

NONMEM:

Nonlinear mixed effect model

OFV:

Objective function value

pc_VPC:

Prediction-corrected visual predictive check

Pop-PK:

Population pharmacokinetics

PROP:

Proportional residual error

RSE:

Relative standard error

RUV:

Residual unidentified variability

TCI:

Target concentration intervention

TDM:

Therapeutic drug monitoring

V:

Volume of distribution

References

  1. McCune JS, Bemer MJ. Pharmacokinetics, pharmacodynamics and pharmacogenomics of Immunosuppressants in allogeneic Haematopoietic cell transplantation: part I. Clin Pharmacokinet. 2016;55(5):525–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373(9674):1550–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fahr A. Cyclosporin clinical pharmacokinetics. Clin Pharmacokinet. 1993;24(6):472–95.

    CAS  PubMed  Google Scholar 

  4. Tafazoli A. Cyclosporine use in hematopoietic stem cell transplantation: pharmacokinetic approach. Immunotherapy. 2015;7(7):811–36.

    CAS  PubMed  Google Scholar 

  5. Golubovic B, Prostran M, Miljkovic B, Vucicevic K, Radivojevic D, Grabnar I. Population pharmacokinetic approach of immunosuppressive therapy in kidney transplant patients. Curr Med Chem. 2016;23(19):1998–2011.

    CAS  PubMed  Google Scholar 

  6. Minto C, Schnider T. Expanding clinical applications of population pharmacodynamic modelling. Br J Clin Pharmacol. 1998;46(4):321–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yates CR, Zhang W, Song P, Li S, Gaber AO, Kotb M, et al. The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J Clin Pharmacol. 2003;43(6):555–64.

    CAS  PubMed  Google Scholar 

  8. Hesselink DA, van Gelder T, van Schaik RH, Balk AH, van der Heiden IP, van Dam T, et al. Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin Pharmacol Ther. 2004;76(6):545–56.

    CAS  PubMed  Google Scholar 

  9. Rousseau A, Leger F, Le Meur Y, Saint-Marcoux F, Paintaud G, Buchler M, et al. Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a Bayesian estimator. Ther Drug Monit. 2004;26(1):23–30.

    CAS  PubMed  Google Scholar 

  10. Tokui K, Kimata T, Uchida K, Yuasa H, Hayashi Y, Itatsu T, et al. Dose adjustment strategy for oral microemulsion formulation of cyclosporine: population pharmacokinetics-based analysis in kidney transplant patients. Ther Drug Monit. 2004;26(3):287–94.

    CAS  PubMed  Google Scholar 

  11. Wu KH, Cui YM, Guo JF, Zhou Y, Zhai SD, Cui FD, et al. Population pharmacokinetics of cyclosporine in clinical renal transplant patients. Drug metabolism and disposition: the biological fate of chemicals. 2005;33(9):1268–75.

    CAS  Google Scholar 

  12. Irtan S, Saint-Marcoux F, Rousseau A, Zhang D, Leroy V, Marquet P, et al. Population pharmacokinetics and bayesian estimator of cyclosporine in pediatric renal transplant patients. Ther Drug Monit. 2007;29(1):96–102.

    CAS  PubMed  Google Scholar 

  13. Chen B, Zhang W, Gu Z, Li J, Zhang Y, Cai W. Population pharmacokinetic study of cyclosporine in Chinese renal transplant recipients. Eur J Clin Pharmacol. 2011;67(6):601–12.

    CAS  PubMed  Google Scholar 

  14. Okada A, Ushigome H, Kanamori M, Morikochi A, Kasai H, Kosaka T, et al. Population pharmacokinetics of cyclosporine a in Japanese renal transplant patients: comprehensive analysis in a single center. Eur J Clin Pharmacol. 2017;73(9):1111–9.

    CAS  PubMed  Google Scholar 

  15. Sun B, Li XY, Gao JW, Rui JZ, Guo YK, Peng ZH, et al. Population pharmacokinetic study of cyclosporine based on NONMEM in Chinese liver transplant recipients. Ther Drug Monit. 2010;32(6):715–22.

    CAS  PubMed  Google Scholar 

  16. Rosenbaum SE, Baheti G, Trull AK, Akhlaghi F. Population pharmacokinetics of cyclosporine in cardiopulmonary transplant recipients. Ther Drug Monit. 2005;27(2):116–22.

    CAS  PubMed  Google Scholar 

  17. Jacobson PA, Ng J, Green KG, Rogosheske J, Brundage R. Posttransplant day significantly influences pharmacokinetics of cyclosporine after hematopoietic stem cell transplantation. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2003;9(5):304–11.

    CAS  Google Scholar 

  18. Eljebari H, Gaies E, Fradj NB, Jebabli N, Salouage I, Trabelsi S, et al. Population pharmacokinetics and Bayesian estimation of cyclosporine in a Tunisian population of hematopoietic stem cell transplant recipient. Eur J Clin Pharmacol. 2012;68(11):1517–24.

    CAS  PubMed  Google Scholar 

  19. Wilhelm AJ, de Graaf P, Veldkamp AI, Janssen JJ, Huijgens PC, Swart EL. Population pharmacokinetics of ciclosporin in haematopoietic allogeneic stem cell transplantation with emphasis on limited sampling strategy. Br J Clin Pharmacol. 2012;73(4):553–63.

    CAS  PubMed  Google Scholar 

  20. Zhou H, Gao Y, Cheng XL, Li ZD. Population pharmacokinetics of cyclosporine a based on NONMEM in Chinese allogeneic hematopoietic stem cell transplantation recipients. Eur J Drug Metab Pharmacokinet. 2012;37(4):271–8.

    CAS  PubMed  Google Scholar 

  21. Zhou Y, Sheng XY, Xu JY, Bi SS, Lu W, Cui YM. Population pharmacokinetic study of cyclosporine in the hematopoietic stem cell transplant recipients. Int J Clin Pharmacol Ther. 2013;51(7):568–75.

    CAS  PubMed  Google Scholar 

  22. Xue L, Zhang WW, Ding XL, Zhang JJ, Bao JA, Miao LY. Population pharmacokinetics and individualized dosage prediction of cyclosporine in allogeneic hematopoietic stem cell transplant patients. Am J Med Sci. 2014;348(6):448–54.

    PubMed  Google Scholar 

  23. Kim MG, Kim IW, Choi B, Han N, Yun HY, Park S, et al. Population pharmacokinetics of cyclosporine in hematopoietic stem cell transplant patients: consideration of genetic polymorphisms. Ann Pharmacother. 2015;49(6):622–30.

    CAS  PubMed  Google Scholar 

  24. Xiaoli D, Qiang F. Population pharmacokinetic study of cyclosporine in patients with nephrotic syndrome. J Clin Pharmacol. 2009;49(7):782–8.

    PubMed  Google Scholar 

  25. Tsuji Y, Iwanaga N, Mizoguchi A, Sonemoto E, Hiraki Y, Ota Y, et al. Population pharmacokinetic approach to the use of low dose cyclosporine in patients with connective tissue diseases. Biol Pharm Bull. 2015;38(9):1265–71.

    CAS  PubMed  Google Scholar 

  26. Mao JJ, Jiao Z, Yun HY, Zhao CY, Chen HC, Qiu XY, et al. External evaluation of population pharmacokinetic models for ciclosporin in adult renal transplant recipients. Br J Clin Pharmacol. 2018;84(1):153–71.

    CAS  PubMed  Google Scholar 

  27. Wallemacq P, Maine GT, Berg K, Rosiere T, Marquet P, Aimo G, et al. Multisite analytical evaluation of the Abbott ARCHITECT cyclosporine assay. Ther Drug Monit. 2010;32(2):145–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fung AWS, Knauer MJ, Blasutig IM, Colantonio DA, Kulasingam V. Evaluation of electrochemiluminescence immunoassays for immunosuppressive drugs on the Roche cobas e411 analyzer. F1000Res. 2017;6:1832.

    PubMed  PubMed Central  Google Scholar 

  29. Qin X, Rui J, Xia Y, Mu H, Song SH, Raja Aziddin RE, et al. Multi-center performance evaluations of Tacrolimus and cyclosporine Electrochemiluminescence immunoassays in the Asia-Pacific region. Ann Lab Med. 2018;38(2):85–94.

    CAS  PubMed  Google Scholar 

  30. Robertshaw M, Lai KN, Swaminathan R. Prediction of creatinine clearance from plasma creatinine: comparison of five formulae. Br J Clin Pharmacol. 1989;28(3):275–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Holford N, Heo YA, Anderson B. A pharmacokinetic standard for babies and adults. J Pharm Sci. 2013;102(9):2941–52.

    CAS  PubMed  Google Scholar 

  32. Germovsek E, Barker CIS, Sharland M, Standing JF. Pharmacokinetic-Pharmacodynamic modeling in pediatric drug development, and the importance of standardized scaling of clearance. Clin Pharmacokinet. 2019;58(1):39–52.

    CAS  PubMed  Google Scholar 

  33. Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24(1):25–36.

    CAS  PubMed  Google Scholar 

  34. Gobburu JV, Lawrence J. Application of resampling techniques to estimate exact significance levels for covariate selection during nonlinear mixed effects model building: some inferences. Pharm Res. 2002;19(1):92–8.

    CAS  PubMed  Google Scholar 

  35. Fanta S, Jonsson S, Backman JT, Karlsson MO, Hoppu K. Developmental pharmacokinetics of ciclosporin--a population pharmacokinetic study in paediatric renal transplant candidates. Br J Clin Pharmacol. 2007;64(6):772–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cotreau MM, von Moltke LL, Greenblatt DJ. The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin Pharmacokinet. 2005;44(1):33–60.

    CAS  PubMed  Google Scholar 

  37. Anderson BJ, Holford NH. Tips and traps analyzing pediatric PK data. Paediatr Anaesth. 2011;21(3):222–37.

    PubMed  Google Scholar 

  38. Pal D, Mitra AK. MDR- and CYP3A4-mediated drug-drug interactions. J NeuroImmune Pharmacol. 2006;1(3):323–39.

    PubMed  Google Scholar 

  39. Akhlaghi F, Trull AK. Distribution of cyclosporin in organ transplant recipients. Clin Pharmacokinet. 2002;41(9):615–37.

    CAS  PubMed  Google Scholar 

  40. Field KM, Dow C, Michael M. Part I: Liver function in oncology: biochemistry and beyond. Lancet Oncol. 2008;9(11):1092–101.

    CAS  PubMed  Google Scholar 

  41. Radcliffe NJ, Seah JM, Clarke M, MacIsaac RJ, Jerums G, Ekinci EI. Clinical predictive factors in diabetic kidney disease progression. J Diabetes Investig. 2017;8(1):6–18.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-yan Miao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 4085 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Zhang, Wj., Tian, Jx. et al. Multicenter-Based Population Pharmacokinetic Analysis of Ciclosporin in Hematopoietic Stem Cell Transplantation Patients. Pharm Res 37, 15 (2020). https://doi.org/10.1007/s11095-019-2740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2740-2

Key Words

Navigation