Skip to main content

Advertisement

Log in

Understanding the Tabletability Differences between Indomethacin Polymorphs Using Powder Brillouin Light Scattering

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The unconventional tabletability of the indomethacin polymorphs – α and γ – are investigated from a topological and mechanical perspective using powder Brillouin light scattering (p-BLS) to identify the specific structure-performance relationship in these materials.

Method

Indomethacin (γ-form) was purchased and used to prepare the α polymorph. Powder X-ray diffraction was used to confirm phase identity, while p-BLS was used to obtain the mechanical properties. Energy frameworks were determined with Crystal Explorer to visualize the interaction topologies. Using a Carver press and a stress-strain analyzer, the tableting performance of each polymorph was determined.

Results

Polymorph-specific acoustic frequency distributions were observed with distinct, zero-porosity, aggregate elastic moduli determined. The p-BLS spectra for α-indomethacin display a population of low-velocity shear modes, indicating a direction of facilitated shear. This improves slip-mediated plasticity and tabletability. Our p-BLS spectra experimentally indicates that a low-energy slip system is available to α-indomethacin which supports ours and previous energy framework calculations. Despite a 2d-layered crystal motif favorable for shear deformation, the γ-form displays a higher shear modulus that is supported by our hydrogen-bonding analysis of γ-indomethacin.

Conclusion

Our experimental, mechanical data is consistent with the predicted interaction topologies and these two inputs combined permit a comprehensive, molecular understanding of polymorph-specific tabletability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sastry SV, Nyshadham JR, Fix JA. Recent technological advances in oral drug delivery – a review. Pharmaceutical Science & Technology Today. 2000;3(4):138–45.

    Article  CAS  Google Scholar 

  2. Sun W-J, Aburub A, Sun CC. Particle engineering for enabling a formulation platform suitable for manufacturing low-dose tablets by direct compression. J Pharm Sci. 2017;106:1772–7.

    Article  CAS  Google Scholar 

  3. Chen X, Wen H, Park K. Challenges and new Technologies of Oral Controlled Release. In: Wen H, editor. Park K, editors. Oral Controlled Release Formulation Design and Drug Delivery: Theory to Practice John Wiley & Sons, Inc.; 2010. p. 257–77.

    Google Scholar 

  4. Newman AW, Byrn SR. Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug Discov Today. 2003;8(19):898–905.

    Article  CAS  Google Scholar 

  5. Bag PP, Chen M, Sun CC, Reddy CM. Direct correlation among crystal structure, mechanical behaviour and Tabletability in a Trimorphic molecular compound. Cryst Eng Comm. 2012;14:3865–7.

    Article  CAS  Google Scholar 

  6. Aitipamula S, Vangala VR. X-ray crystallography and its role in understanding the physicochemical properties of pharmaceutical Cocrystals. Journal of the Indian Institute of Science. 2017;97(2):227–43.

    Article  Google Scholar 

  7. Kawashima Y, Imai M, Takeuchi H, Yamamoto H, Kamiya K, Hino T. Improved Flowability and Compactability of spherically agglomerated crystals of ascorbic acid for direct tableting designed by spherical crystallization process. Powder Technol. 2003;130(1–3):283–9.

    Article  CAS  Google Scholar 

  8. Kamahara T, Takasuga M, Tung HH, Hanaki K, Fukunaka T, Izzo B, et al. Generation of fine pharmaceutical particles via controlled secondary nucleation under high shear environment during crystallization − process development and scale-up. Org Process Res Dev. 2007;11(4):699–703.

    Article  CAS  Google Scholar 

  9. Chang S-Y, Sun CC. Superior plasticity and Tabletability of theophylline monohydrate. Mol Pharm. 2017;14:2047–55.

    Article  CAS  Google Scholar 

  10. Desiraju GR. Crystal Engineering: From Molecule to Crystal J Am Chem Soc. 2013;135:9952–67.

    CAS  PubMed  Google Scholar 

  11. Varughese S, Kiran MSRN, Solanko KA, Bond AD, Ramamurty U, Desiraju GR. Interaction anisotropy and shear instability of Asprin polymorphs established by Nanoindentation. Chem Sci. 2011;2(11):2236–42.

    Article  CAS  Google Scholar 

  12. Ghosh S, Reddy CM. Elastic and bendable caffeine Cocrystals: implications for the Design of Flexible Organic Materials. Angew Chem Int Ed. 2012;51(41):10319–23.

    Article  CAS  Google Scholar 

  13. Mishra MK, Varughese S, Ramamurty U, Desiraju GR. Odd–Even Effect in the Elastic Modulii of α,ω-Alkanedicarboxylic Acids. J Am Chem Soc. 2013;135(22):8121–4.

    Article  CAS  Google Scholar 

  14. Nangia A. Supramolecular Chemistry and Crystal Engineering. J Chem Sci. 2010;122(3):295–310.

    Article  CAS  Google Scholar 

  15. Desiraju GR. Crystal engineering: structure, property and beyond. I U Cr J. 2017;4(6):710–1.

    CAS  Google Scholar 

  16. Anbalagan P, Liew CV, Heng PWS. Role of dwell on compaction deformation during tableting: an overview. Journal of Pharmaceutical Investigation. 2017;47(3):179–81.

    Article  Google Scholar 

  17. Wang C, Sun CC. Identifying Slip Planes in Organic Polymorphs by Combined Energy Framework Calculations and Topology Analysis Cryst Growth Des. 2018;18:1909–16.

    CAS  Google Scholar 

  18. Singaraju AB, Iyer M, Haware RV, Stevens LL. Caffeine Co-Crystal Mechanics Evaluated with a Combined Structural and Spectroscopic Approach Cryst Growth Des 2016;16:4383–4391.

  19. Ahmed H, Shimpi MR, Velaga SP. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol. Drug Dev Ind Pharm. 2017;43(1):89–97.

    Article  CAS  Google Scholar 

  20. Guiry KP, Kelleher JM, Lawrence SE, Mcauliffe MT, Moynihan HA, Ryan AL. Crystal polymorphism of pharmaceuticals: probing crystal nucleation at the molecular level. J Enzyme Inhib Med Chem 2007;22(5):550–5, 555.

    Article  CAS  Google Scholar 

  21. Persson A-S, Ahmed H, Velaga S, Alderborn Go. Powder Compression Properties of Paracetamol, Paracetamol Hydrochloride, and Paracetamol Cocrystals and Coformers. J Pharm Sci. 2018;107:1920–7.

  22. Singaraju AB, Nguyen K, Jain A, Haware RV, Stevens LL. Aggregate Elasticity, Crystal Structure, and Tableting Performance for p-Aminobenzoic Acid and a Series of Its Benzoate Esters. Mol Pharmaceutics. 2016;13:3794–806.

    Article  CAS  Google Scholar 

  23. Sun C, Grant DJ. Influence of crystal structure on the tableting properties of Sulfamerazine polymorphs. Pharm Res. 2001;18(3):274–80.

    Article  CAS  Google Scholar 

  24. Khomane KS, More PK, Raghavendra G, Bansal AK. Molecular understanding of the compaction behavior of indomethacin polymorphs. Mol Pharm. 2013;10(2):631–9.

    Article  CAS  Google Scholar 

  25. Singaraju AB, Bahl D, Stevens LL. Brillouin light scattering: development of a near century-old technique for characterizing the mechanical properties of materials. AAPS PharmSciTech. 2019;20(3):109.

    Article  Google Scholar 

  26. Singaraju AB, Nguyen K, Gawedzki P, Herald F, Meyer G, Wentworth D, et al. Combining crystal structure and interaction topology for interpreting functional molecular solids: A study of theophylline Cocrystals. Cryst Growth Des. 2017;17(12):6741–51.

    Article  CAS  Google Scholar 

  27. Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The Cambridge structural database. Acta Crystallographica Section B. 2016;72(2):171–9.

    Article  CAS  Google Scholar 

  28. Hernandez J, Li G, Cummins HZ, Callender RH. Low-frequency light-scattering spectroscopy of powders. J Opt Soc Am B. 1996;13(6):1130–4.

    Article  CAS  Google Scholar 

  29. Bahl D, Singaraju AB, Stevens LL. Aggregate elasticity and Tabletability of molecular solids: a validation and application of powder Brillouin light scattering. Journal of the American Association of Pharmaceutical Scientists. 2018;19(8):3430–9.

    CAS  Google Scholar 

  30. Juban A, Briançon S, Puel F, Hoc T, Nouguier-Lehon C. Experimental study of tensile strength of pharmaceutical tablets: effect of the diluent nature and compression pressure. EPJ Web Conf. 2017;140:13002.

    Article  Google Scholar 

  31. Turner MJ, Grabowsky S, Jaytilaka D, Spackman MA. Accurate and efficient model energies for exploring intermolecular interactions in molecular crystals. J Phys Chem Lett. 2014;5(24):4249–55.

    Article  CAS  Google Scholar 

  32. Wolff SK, Grimwood DJ. McKinnon JJ. Turner MJ: Jayatilaka D, Spackman MA. University of Western Australia; 2012.

  33. Akande OF, Ford JL, Rowe PH, Rubinstein MH. Pharmaceutics: the effects of lag-time and dwell-time on the compaction properties of 1:1 paracetamol/microcrystalline cellulose tablets prepared by pre-compression and Main compression. J Pharm Pharmacol. 1998;50(1):19–28.

    Article  Google Scholar 

  34. Patel S, Kaushal AM, Bansal AK. Compression Physics in the Formulation Development of Tablets. Ther Drug Carrier Syst. 2006;23(1):1–65.

    Article  CAS  Google Scholar 

  35. Shibata T, Kojima S. Liquid, glass, and crystalline indomethacin studied by Brillouin scattering. Japanese Jouranl of Applied Physics. 2018;57(7L1):07LB3.

    Google Scholar 

  36. Osei-Yeboah F, Chang S-Y, Sun CC. A critical Examination of the Phenomenon of Bonding Area - Bonding Strength Interplay in Powder Tableting. Pharm Res. 2016;33(5):1126–32.

    Article  CAS  Google Scholar 

  37. Eriksson M, Alderborn G. The effect of particle fragmentation and deformation on the Interparticulate Bond formation process during powder compaction. Pharm Res. 1995;12:1031–9.

    Article  CAS  Google Scholar 

  38. Nordström J, Klevan I, Alderborn G. A protocol for the classification of powder compression characteristics. Eur J Pharm Biopharm. 2012;80:209–16.

    Article  Google Scholar 

  39. Lamešić D, Planinšek O, GermanIlić I. Modified equation for particle bonding area and strength with inclusion of powder fragmentation propensity. Eur J Pharm Sci. 2018;121:218–27.

    Article  Google Scholar 

  40. Shishkin OV, Dyakonenko VV, Maleev AV. Supramolecular architecture of crystals of fused hydrocarbons based on topology of intermolecular interactions. Cryst Eng Comm. 2012;14:1795–804.

    Article  CAS  Google Scholar 

  41. Cyrański MK, Jamróz MH, Rygula A, Dobrowolski JC, Dobrzycki Ł, Baranska M. On two alizarin polymorphs. CrystEngComm. 2012;14(10):3667–76.

    Article  Google Scholar 

  42. Sun CC, Kiang YH. On the identification of slip Planes in organic crystals based on attachment energy calculation. J Pharm Sic. 2007;97(8):3456–61.

    Article  Google Scholar 

Download references

Acknowledgments and Disclosures

B.A.Y. was supported by the Terrence and Donna Dahl Pharmaceutics Fellowship during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis L. Stevens.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, B.A., Bahl, D. & Stevens, L.L. Understanding the Tabletability Differences between Indomethacin Polymorphs Using Powder Brillouin Light Scattering. Pharm Res 36, 150 (2019). https://doi.org/10.1007/s11095-019-2681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2681-9

Key words

Navigation