Skip to main content
Log in

A Random Forest Approach for Counting Silicone Oil Droplets and Protein Particles in Antibody Formulations Using Flow Microscopy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate a random forest model that counts silicone oil droplets and non-silicone oil particles in protein formulations with large class imbalance.

Methods

In this work, we present a novel approach for automated image analysis of flow microscopy data based on random forest classification enabling rapid analysis of large data sets. The random forest approach overcomes many of the limitations of traditional classification schemes derived from simple filters or regression models. In particular, the approach does not require a priori selection of important morphology parameters.

Results

We analyzed silicone oil droplets and non-silicone oil particles observed in four model systems with protein concentrations of 20, 50 and 125 mg/mL. Filters based on random forests achieve higher classification accuracies when compared to regression based filters. Additionally, we showcase a procedure that allows for accurate counting of particles ≥1 μm.

Conclusions

Our method is generally applicable for classification and counting of different classes of particles as long as class morphologies are differentially expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The density histogram is a smoothed version of the relative histogram such that the entire area of the histogram equals 1.

Abbreviations

CART:

Classification and regression tree

ECD:

Equivalent cirlcular diameter

ESD:

Equivalent spherical diameter

mAb:

Monoclonal antibody

NSO:

Non-silicone oil

PFS:

Pre-filled syringe

SO:

Silicone oil

References

  1. Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, et al. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci. 2010;99(8):3302–21.

    Article  CAS  PubMed  Google Scholar 

  2. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98(4):1201–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosenberg A. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3):E501–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Narhi LO, Jiang YJ, Cao S, Benedek K, Shnek D. A critical review of analytical methods for subvisible and visible particles. Curr Pharm Biotechnol. 2009;10(4):373–81.

    Article  CAS  PubMed  Google Scholar 

  5. Zölls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Friess W, et al. Particles in therapeutic protein formulations, part 1: overview of analytical methods. J Pharm Sci. 2012;101(3):914–35.

    Article  PubMed  Google Scholar 

  6. Patel AR, Lau D, Liu J. Quantification and characterization of micrometer and submicrometer subvisible particles in protein therapeutics by use of a suspended microchannel resonator. Anal Chem. 2012;84(15):6833–40.

    Article  CAS  PubMed  Google Scholar 

  7. Weinbuch D, Zölls S, Wiggenhorn M, Friess W, Winter G, Jiskoot W, et al. Micro–flow imaging and resonant mass measurement (archimedes) – complementary methods to quantitatively differentiate protein particles and silicone oil droplets. J Pharm Sci. 2013;102(7):2152–65.

    Article  CAS  PubMed  Google Scholar 

  8. Sharma D, King D, Oma P, Merchant C. Micro-flow imaging: flow microscopy applied to sub-visible particulate analysis in protein formulations. AAPS J. 2010;12(3):455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Demeule B, Messick S, Shire SJ, Liu J. Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J. 2010;12(4):708–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zölls S, Weinbuch D, Wiggenhorn M, Winter G, Friess W, Jiskoot W, et al. Flow imaging microscopy for protein particle analysis—a comparative evaluation of four different analytical instruments. AAPS J. 2013;15(4):1200–11.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Strehl R, Rombach-Riegraf V, Diez M, Egodage K, Bluemel M, Jeschke M, et al. Discrimination between silicone oil droplets and protein aggregates in biopharmaceuticals: a novel multiparametric image filter for sub-visible particles in microflow imaging analysis. Pharm Res. 2012;29(2):594–602.

    Article  CAS  PubMed  Google Scholar 

  12. Huang CT, Sharma D, Oma P, Krishnamurthy R. Quantitation of protein particles in parenteral solutions using micro-flow imaging. J Pharm Sci. 2009;98(9):3058–71.

    Article  CAS  PubMed  Google Scholar 

  13. Kuhn M, Johnson K. Applied predictive modeling: Springer; 2013.

  14. Kuhn M. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem and Luca Scrucca. caret: Classification and Regression Training. R package http://CRAN.R-project.org/package=caret. 2015.

  15. Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):26.

    Article  Google Scholar 

  16. Maimon O, Rokach L. Data mining with decision trees: theory and applications. USA: World Scientific Publishing; 2012.

    Google Scholar 

  17. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression Trees: Taylor & Francis; 1984.

  18. Dago KT, Luthringer R, Lengellé R, Rinaudo G, Macher JP. Statistical decision tree: a tool for studying pharmaco-EEG effects of CNS-active drugs. Neuropsychobiology. 1994;29(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  19. Bowser-Chao D, Dzialo DL. Comparison of the use of binary decision trees and neural networks in top-quark detection. Phys Rev D. 1993;47(5):1900–5.

    Article  CAS  Google Scholar 

  20. Salzberg S. Locating protein coding regions in human DNA using a decision tree algorithm. J Comp Biol. 1995;2(3):473–85.

    Article  CAS  Google Scholar 

  21. Kokol P, Mernik M, Završnik J, Kancler K, Malčić I. Decision trees based on automatic learning and their use in cardiology. J Med Syst. 1994;18(4):201–6.

    Article  CAS  PubMed  Google Scholar 

  22. Falconer JA, Naughton BJ, Dunlop DD, Roth EJ, Strasser DC, Sinacore JM. Predicting stroke inpatient rehabilitation outcome using a classification tree approach. Arch Phys Med Rehabil. 1994;75(6):619–25.

    Article  CAS  PubMed  Google Scholar 

  23. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  24. Oshiro TM, Perez PS, Baranauskas JA. How many trees in a random forest? In: Perner P, editor. Machine learning and data mining in pattern recognition: 8th international conference, MLDM 2012, Berlin, Germany, July 13–20, 2012 proceedings. Berlin: Springer Berlin Heidelberg; 2012. p. 154–68.

    Chapter  Google Scholar 

  25. Forman G. Counting positives accurately despite inaccurate classification. Machine Learning: ECML 2005: Springer; 2005. p. 564–75.

  26. Milli L, Monreale A, Rossetti G, Giannotti F, Pedreschi D, Sebastiani F, editors. Quantification trees. Data Mining (ICDM), 2013 I.E. 13th International Conference on; 2013: IEEE.

  27. Zölls S, Gregoritza M, Tantipolphan R, Wiggenhorn M, Winter G, Friess W, et al. How subvisible particles become invisible—relevance of the refractive index for protein particle analysis. J Pharm Sci. 2013;102(5):1434–46.

    Article  PubMed  Google Scholar 

  28. Ripple D, Hu Z. Correcting the relative bias of light obscuration and flow imaging particle counters. Pharm Res. 2015;1–20.

  29. Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286(28):25118–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to acknowledge Greg Downing, Mark Hu and Thomas Scherer for providing samples and valuable discussions. Daniel Coleman and Barthelemy Demeule are acknowledged for helpful discussions and reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel Saggu or Theodoro Koulis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Details about the used training sets and size distributions for all model systems. Parameter importance and counting accuracy of the FlowCam (color) data. (DOC 2104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saggu, M., Patel, A.R. & Koulis, T. A Random Forest Approach for Counting Silicone Oil Droplets and Protein Particles in Antibody Formulations Using Flow Microscopy. Pharm Res 34, 479–491 (2017). https://doi.org/10.1007/s11095-016-2079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2079-x

KEY WORDS

Navigation