Skip to main content
Log in

Comparative Study of Different Nano-Formulations of Curcumin for Reversal of Doxorubicin Resistance in K562R Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Curcumin is very well established as a chemo-therapeutic, chemo-preventive and chemo-sensitizing agent in diverse disease conditions. As the isolated pure form has poor solubility and pharmacokinetic problems, therefore it is encapsulated in to several nano-formulations to improve its bioavailability. Here in the current study, we aim to compare different nano-formulations of curcumin for their chemo-sensitizing activity in doxorubicin (DOX) resistant K562 cells.

Methods

Four different curcumin formulations were prepared namely DMSO assisted curcumin nano-dispersion (CurD, 260 nm), liposomal curcumin (CurL, 165 nm), MPEG-PCL micellar curcumin (CurM, 18 nm) and cyclodextrin encapsulated curcumin (CurN, 37 nm). The formulations were subjected to particle characterizations (size, zeta potential, release studies), followed by biological assays such as cellular uptake, P-gp inhibitory activity and reversal of DOX resistance by co-treatment with DOX.

Results

Curcumin uptake in K562N and K562R cells was mildly reduced when treated with CurL and CurM, while for CurD and CurN the uptake remained equivalent. However, CurL retained P-gp inhibitory activity of curcumin and with a considerable chemo-sensitizing effect but CurM showed no P-gp inhibitory activity. CurN retained above biological activities, but requires a secondary carrier under in vivo conditions.

Conclusions

From the results, CurM was found to be most suitable for solubilization of curcumin where as CurL can be considered as most suitable nano-formulation for reversal of DOX resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

DCM:

Dichloromethane

DMSO:

Dimethyl sulfoxide

DOX:

Doxorubicin

DSPE-PEG:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)]

EPR:

Enhanced permeation and retention

FL-1:

Fluorescence channel-1

HP-β-CD:

Hydroxyl propyl-β-cyclodextrin

HSPC:

Hydrogenated soy phosphatidyl choline

MFI:

Mean fluorescence intensity

MPEG-P(CL-co-PDO):

Methoxypoly(ethylene glycol)-b-poly(ε-caprolactone-co-p-dioxanone)

MPEG-PCL:

Methoxypoly(ethylene glycol)-b-poly(ε-caprolactone)

OPA:

Ortho-phosphoric acid

PEO-PCL:

Polyethylene oxide-b- poly-ε-caprolactone

PFA:

P-formaldehyde

P-gp:

P-glycoprotein

PLGA:

Polylactic-glycolic acid

PMS:

Phenazine methosulfate

PVA:

Polyvinyl alcohol

TPGS:

D-α-tocopherylpolyethylene glycol

XTT:

(2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide)

References

  1. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol. 2008;76(11):1590–611.

    Article  CAS  PubMed  Google Scholar 

  2. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2012;15(1):195–218.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R. Curcumin as a wound healing agent. Life Sci. 2014;116(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  4. Jayaprakasha GK, Jaganmohan Rao L, Sakariah KK. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 2006;98(4):720–4.

    Article  CAS  Google Scholar 

  5. Teiten MH, Eifes S, Dicato M, Diederich M. Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins (Basel). 2010;2(1):128–62.

    Article  CAS  Google Scholar 

  6. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: an old-age disease with an age-old solution. Cancer Lett. 2008;267(1):133–64.

    Article  CAS  PubMed  Google Scholar 

  7. Shishodia S, Chaturvedi MM, Aggarwal BB. Role of curcumin in cancer therapy. Curr Probl Cancer. 2007;31(4):243–305.

    Article  PubMed  Google Scholar 

  8. Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist. 2003;8(5):411–24.

    Article  CAS  PubMed  Google Scholar 

  9. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–34.

    Article  CAS  PubMed  Google Scholar 

  10. X-q T, Bi H, J-q F, J-g C. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol Sin. 2005;26(8):1009–16.

    Article  Google Scholar 

  11. Choi BH, Kim CG, Lim Y, Shin SY, Lee YH. Curcumin down-regulates the multidrug-resistance mdr1b gene by inhibiting the PI3K/Akt/NFIB pathway. Cancer Lett. 2008;259(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  12. Kwon Y. Curcumin as a cancer chemotherapy sensitizing agent. J Korean Soc Appl Biol Chem. 2014;57(2):273–80.

    Article  CAS  Google Scholar 

  13. Sreekanth CN, Bava SV, Sreekumar E, Anto RJ. Molecular evidences for the chemosensitizing efficacy of liposomal curcumin in paclitaxel chemotherapy in mouse models of cervical cancer. Oncogene. 2011;30(28):3139–52.

    Article  CAS  PubMed  Google Scholar 

  14. Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer. 2005;41(13):1955–68.

    Article  CAS  PubMed  Google Scholar 

  15. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64(4):353–6.

    Article  CAS  PubMed  Google Scholar 

  16. Flora G, Gupta D, Tiwari A. Nanocurcumin: a promising therapeutic advancement over native curcumin. Crit Rev Ther Drug Carrier Syst. 2013;30(4):331–68.

    Article  CAS  PubMed  Google Scholar 

  17. Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  18. Rocks N, Bekaert S, Coia I, Paulissen G, Gueders M, Evrard B, et al. Curcumin-cyclodextrin complexes potentiate gemcitabine effects in an orthotopic mouse model of lung cancer. Br J Cancer. 2012;107(7):1083–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  20. Kumari P, Swami MO, Nadipalli SK, Myneni S, Ghosh B, Biswas S. Curcumin delivery by poly(Lactide)-based co-polymeric micelles: an in vitro anticancer study. Pharm Res. 2016;33(4):826–41.

    Article  CAS  PubMed  Google Scholar 

  21. Lee WH, Bebawy M, Loo CY, Luk F, Mason RS, Rohanizadeh R. Fabrication of curcumin micellar nanoparticles with enhanced anti-cancer activity. J Biomed Nanotechnol. 2015;11(6):1093–105.

    Article  CAS  PubMed  Google Scholar 

  22. Song L, Shen Y, Hou J, Lei L, Guo S, Qian C. Polymeric micelles for parenteral delivery of curcumin: preparation, characterization and in vitro evaluation. Colloids Surf A Physicochem Eng Asp. 2011;390(1-3):25–32.

  23. Wang BL, Shen YM, Zhang QW, Li YL, Luo M, Liu Z, et al. Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer. Int J Nanomedicine. 2013;8:3521–31.

    PubMed  PubMed Central  Google Scholar 

  24. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol. 2007;5:3.

    Article  Google Scholar 

  25. Sun M, Gao Y, Guo C, Cao F, Song Z, Xi Y, et al. Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle. J Nanopart Res [journal article]. 2010;12(8):3111–22.

    Article  CAS  Google Scholar 

  26. Zou P, Helson L, Maitra A, Stern ST, McNeil SE. Polymeric curcumin nanoparticle pharmacokinetics and metabolism in bile duct cannulated rats. Mol Pharm. 2013;10(5):1977–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, et al. Curcumin-loaded gamma-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine. 2012;8(4):440–51.

    CAS  PubMed  Google Scholar 

  28. Yadav VR, Prasad S, Kannappan R, Ravindran J, Chaturvedi MM, Vaahtera L, et al. Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochem Pharmacol. 2010;80(7):1021–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allijn IE, Schiffelers RM, Storm G. Comparison of pharmaceutical nanoformulations for curcumin: Enhancement of aqueous solubility and carrier retention. Int J Pharm. 2016;506(1-2):407–13.

    Article  CAS  PubMed  Google Scholar 

  30. Beloqui A, Memvanga PB, Coco R, Reimondez-Troitino S, Alhouayek M, Muccioli GG, et al. A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids Surf B Biointerfaces. 2016;143:327–35.

    Article  CAS  PubMed  Google Scholar 

  31. Kathawate L, Joshi PV, Dash TK, Pal S, Nikalje M, Weyhermüller T, et al. Reaction between lawsone and aminophenol derivatives: Synthesis, characterization, molecular structures and antiproliferative activity. J Mol Struct. 2014;1075:397–405.

    Article  CAS  Google Scholar 

  32. Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB. The liposomal formulation of doxorubicin. Methods Enzymol. 2005;391:71–97.

    Article  CAS  PubMed  Google Scholar 

  33. Rachmawati H, Edityaningrum CA, Mauludin R. Molecular inclusion complex of curcumin-beta-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech. 2013;14(4):1303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013;5(4):542–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu Y, Xie J, Tong YW, Wang C-H. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J Control Release. 2007;118(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  36. Xue C, Wang C, Liu Q, Meng Q, Sun H, Huo X, et al. Targeting P-glycoprotein expression and cancer cell energy metabolism: combination of metformin and 2-deoxyglucose reverses the multidrug resistance of K562/Dox cells to doxorubicin. Tumor Biol. [journal article]. 2016;37(7):8587–97.

  37. Zhu HJ, Wang JS, Guo QL, Jiang Y, Liu GQ. Reversal of P-glycoprotein mediated multidrug resistance in K562 cell line by a novel synthetic calmodulin inhibitor, E6. Biol Pharm Bull. 2005;28(10):1974–8.

    Article  CAS  PubMed  Google Scholar 

  38. Chen W-C, Lai Y-A, Lin Y-C, Ma J-W, Huang L-F, Yang N-S, et al. Curcumin suppresses doxorubicin-induced epithelial mesenchymal transition via the inhibition of TGF-I and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J Agric Food Chem. 2013;61(48):11817–24.

    Article  CAS  PubMed  Google Scholar 

  39. Sadzuka Y, Nagamine M, Toyooka T, Ibuki Y, Sonobe T. Beneficial effects of curcumin on antitumor activity and adverse reactions of doxorubicin. Int J Pharm. 2012;432(1-2):42–9.

  40. Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D’Alessandro N. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett. 2005;224(1):53–65.

    Article  CAS  PubMed  Google Scholar 

  41. Sen GS, Mohanty S, Hossain DMS, Bhattacharyya S, Banerjee S, Chakraborty J, et al. Curcumin enhances the efficacy of chemotherapy by tailoring p65NF-p300 cross-talk in favor of p53-p300 in breast cancer. J Biol Chem. 2011;286(49):42232–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duan J, Mansour HM, Zhang Y, Deng X, Chen Y, Wang J, et al. Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly(butyl cyanoacrylate) nanoparticles. Int J Pharm. 2012;426(1-2):193–201.

  43. Qin C-H, Li Y-G, Wu J, He H-J. Curcumin reverses adriamycin resistance of thermotolerant hepatocarcinoma cells by down regulating P glycoprotein and heat shock protein 70. Prog Biochem Biophys. 2012;39(2):151–60.

    Article  CAS  Google Scholar 

  44. Wang L, Wang W, Rui Z, Zhou D. The effective combination therapy against human osteosarcoma: doxorubicin plus curcumin co-encapsulated lipid-coated polymeric nanoparticulate drug delivery system. Drug Deliv. 2016:1–9. doi:10.3109/10717544.2016.1162875.

  45. Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanomedicine: a road to cancer therapeutics. Curr Pharm Des. 2013;19(11):1994–2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jantarat C, Sirathanarun P, Ratanapongsai S, Watcharakan P, Sunyapong S, Wadu A. Curcumin-hydroxypropyl-cyclodextrin inclusion complex preparation methods: effect of common solvent evaporation, freeze drying, and pH shift on solubility and stability of curcumin. Trop J Pharm Res. 2014;13(8):1215–23.

    Article  CAS  Google Scholar 

  47. Popat A, Karmakar S, Jambhrunkar S, Xu C, Yu C. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B Biointerfaces. 2014;117:520–7.

    Article  CAS  PubMed  Google Scholar 

  48. Singh R, Tønnesen HH, Vogensen SB, Loftsson T, Másson M. Studies of curcumin and curcuminoids. XXXVI. The stoichiometry and complexation constants of cyclodextrin complexes as determined by the phase-solubility method and UV–Vis titration. J Incl Phenom Macrocycl Chem. 2009;66(3):335–48.

    Article  Google Scholar 

  49. Aliabadi HM, Brocks DR, Mahdipoor P, Lavasanifar A. A novel use of an in vitro method to predict the in vivo stability of block copolymer based nano-containers. J Control Release. 2007;122(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  50. Binkhathlan Z, Shayeganpour A, Brocks DR, Lavasanifar A. Encapsulation of P-glycoprotein inhibitors by polymeric micelles can reduce their pharmacokinetic interactions with doxorubicin. Eur J Pharm Biopharm. 2012;81(1):142–8.

    Article  CAS  PubMed  Google Scholar 

  51. Krishna R, McIntosh N, Riggs KW, Mayer LD. Doxorubicin encapsulated in sterically stabilized liposomes exhibits renal and biliary clearance properties that are independent of valspodar (PSC 833) under conditions that significantly inhibit nonencapsulated drug excretion. Clin Cancer Res. 1999;5(10):2939–47.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

Authors are thankful to Dr Soumen Chakraborty, Institute of life sciences, Bhubaneswar for providing the cell line. Authors acknowledge SERB, Govt. of India, for funding “Fast Track Scheme for Young Scientists” grant (No.SERC/LS-411/2011) and NISER, DAE, Govt. of India, for research fellowship. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Badireenath Konkimalla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, T.K., Konkimalla, V.B. Comparative Study of Different Nano-Formulations of Curcumin for Reversal of Doxorubicin Resistance in K562R Cells. Pharm Res 34, 279–289 (2017). https://doi.org/10.1007/s11095-016-2060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2060-8

Key words

Navigation