Skip to main content

Advertisement

Log in

Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Curcumin, a widely used coloring agent and spice in food, has a potential in blocking brain tumor formation and curing Alzheimer’s disease. Due to the specific properties of blood–brain barrier (BBB), only traces of curcumin were transported across BBB. The aim of the present study was to design and characterize curcumin loaded polybutylcyanoacrylate nanoparticles (PBCN) coated with polysorbate 80, and to evaluate the effect of PBCN as a delivery system on carrying curcumin across BBB. Curcumin loaded nanoparticles were prepared by an anionic polymerization method, and they presented in a core–shell spherical shape under transmission electron microscopy, with an average diameter of 152.0 nm. The average drug loading was 21.1%. Physicochemical status of curcumin in the nanoparticles was confirmed with differential scanning colorimetry and Fourier transform infrared spectroscopy. The in vitro release behavior of drug from the nanoparticles was fitted to a double phase kinetics model. The studies of pharmacokinetic and bio-distribution to brain were conducted in mice after intravenous administration of the nanoparticle formulation at the dose of 5 mg/kg and curcumin solution at the dose of 10 mg/kg via the tail vein. The results showed that in plasma, the area under concentration–time curve (AUC0–∞) for curcumin loaded nanoparticles was greater than that for the control solution, moreover, the mean residence time of curcumin loaded nanoparticles was 14-fold that of the control solution. In brain, AUC0–∞ for curcumin loaded nanoparticles was 2.53-fold that for the control solution. In conclusion, the present study demonstrated that PBCN could enhance the transport of curcumin to brain and have a potential as a delivery system to cross the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Int J Pharm 61:428–437. doi:10.1016/j.addr.2009.03.009

    CAS  Google Scholar 

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release 100:5–28. doi:10.#10.1016/j.jconrel.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  • Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J (1997) Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14:325–328. doi:10.1023/A:1012098005098

    Article  CAS  PubMed  Google Scholar 

  • Alyautdin RN, Tezikov EB, Ramge P, Kharkevich DA, Begley DJ, Kreuter J (1998) Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated poly (butylcyanoacrylate) nanoparticles: an in situ brain perfusion study. J Microencapsul 15:67–74. doi:10.3109/02652049809006836

    Article  CAS  PubMed  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of Curcumin: problems and promises. Mol Pharm 4:807–818. doi:10.1021/mp700113r

    Article  CAS  PubMed  Google Scholar 

  • Batrakova EV, Li S, Li YL, Alakhovb VY, Elmquist WF, Kabanov AV (2004) Distribution kinetics of a micelle-forming block copolymer Pluronic P85. J Control Release 100:389–397. doi:10.1016/j.jconrel.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  • Behan N, Birkinshaw C, Clarke N (2001) Poly n-butyl cyanoacrylate nanoparticles: a mechanistic study of polymerisation and particle formation. Biomaterials 22:1335–1344. doi:10.1016/S0142-9612(00)00286-6

    Article  CAS  PubMed  Google Scholar 

  • Duan JH, Zhang YD, Chen W, Shen CR, Liao MM, Pan YF, Wang JW, Deng XM, Zhao JF (2009) Cationic polybutyl cyanoacrylate nanoparticles for DNA delivery. J Biomed Biotechnol 2009:149254. doi:10.1155/2009/149254

    PubMed  Google Scholar 

  • Duro R, Alvarez C, Martínez-Pacheco R, Gómez-Amoza JL, Concheiro A, Souto C (1998) The adsorption of cellulose ethers in aqueous suspensions of pyrantel pamoate: effects on zeta potential and stability. Eur J Pharm Biopharm 45:181–188. doi:10.1016/S0939-6411(97)00103-3

    Article  CAS  PubMed  Google Scholar 

  • Fawaz F, Guyot M, Lagueny AM, Devissaguet JP (1997) Ciprofloxacin-loaded poly(isobutylcyanoacrylate) nanoparticles: preparation and characterization. Int J Pharm 154:191–203 Cote INIST: 16510, 35400006884077.0080

    Article  CAS  Google Scholar 

  • Gao KP, Jiang XG (2006) Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm 310:213–219. doi:10.1016/j.ijpharm.2005.11.040

    Article  CAS  PubMed  Google Scholar 

  • Gelperina SE, Khalansky AS, Skidan IN, Smirnova ZS, Bobruskin AI, Severin SE, Turowski B, Zanella FE, Kreuter J (2002) Toxicological studies of doxorubicin bound to polysorbate 80-coated poly (butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol Lett 126:131–141. doi:10.1016/S0378-4274(01)00456-8

    Article  CAS  PubMed  Google Scholar 

  • Gessner A, Olbrich C, Schroder W, Kayser O, Muller RH (2001) The role of plasma proteins in brain targeting: species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles. Int J Pharm 214:87–91. doi:10.1016/S0378-5173(00)00639-6

    Article  CAS  PubMed  Google Scholar 

  • Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80 coated nanoparticles. Pharm Res 16:1564–1570. doi:10.1023/A:1018983904537

    Article  CAS  PubMed  Google Scholar 

  • Huang CY, Lee YD (2006) Core-shell type of nanoparticles composed of poly [(n-butyl cyanoacrylate)-co-(2-octylcyanoacrylate)] copolymers for drug delivery application: synthesis, characterization and in vitro degradation. Int J Pharm 325:132–139. doi:10.1016/j.ijpharm.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  • Huang CY, Chen CM, Lee YD (2007) Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly (n-butyl cyanoacrylate) nanoparticles via miniemulsion. Int J Pharm 338:267–275. doi:10.1016/j.ijpharm.2007.01.052

    Article  CAS  PubMed  Google Scholar 

  • Huo DJ, Deng SH, Li LB, Ji JB (2005) Studies on the poly(lactic-co-glycolic) acid microspheres of cisplatin for lung-targeting. Int J Pharm 289:63–67. doi:10.1016/j.ijpharm.2004.10.017

    Article  CAS  PubMed  Google Scholar 

  • Ishrat T, Hoda MN, Khan MB, Yousuf S, Ahmad M, Khan MM, Ahmad A, Islama F (2009) Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol 19:636–647. doi:10.1016/j.euroneuro.2009.02.002

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA (1995) Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674:171–174. doi:10.1016/0006-8993(95)00023-J

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J, Shamenkov D, Petrov V, Ramage P, Cychutek K, Koch BC, Alyautdin R (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J Drug Target 10:317–325. doi:10.1080/10611860290031877

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Chen HH (2006) Effect of nanoparticulate poly (butyl) cyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood–brain barrier. Int J Pharm 327:160–169. doi:10.1016/j.ijpharm.2006.07.044

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Su FL (2007) Transport of stavudine, delavirdine, and saquinavir across the blood–brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles. Int J Pharm 340:143–152. doi:10.1016/j.ijpharm.2007.03.012

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jiang YY, Fan GR, Wu YT, Zhang C (2009) A rapid and simple HLPC method for the determination of curcumin in rat plasma: assay development, validation, and application to a pharmacokinetic study of curcumin liposome. J Biomed Chromatogr 23:1201–1207. doi:10.1002/.bmc1244

    Article  CAS  Google Scholar 

  • Liu J, Zhu J, Du Z, Qin B (2005) Preparation and pharmacokinetic evaluation of Tashinone IIA solid lipid nanoparticles. Drug Dev Ind Pharm 31:551–556. doi:10.1080/03639040500214761

    Article  PubMed  Google Scholar 

  • Lv QZ, Yu AH, Xi YW, Li HL, Song ZM, Cui J, Cao FL, Zhai GX (2009) Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm 372:191–198. doi:10.1016/j.ijpharm.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  • Ma ZS, Shayeganpour A, Brocks DR, Lavasanifar A, Samuel J (2007) High-performance liquid chromatography analysis of curcumin in rat plasma: application to pharmacokinetics of polymeric micellar formation of curcumin. Biomed Chromatogr 21:546–552. doi:10.1002/bmc.795

    Article  CAS  PubMed  Google Scholar 

  • Mulik R, Mahadika K, Paradkarb A (2009) Development of curcuminoids loaded poly (butyl) cyanoacrylate nanoparticles: Physicochemical characterization and stability study. Eur Pharm Sci 37:395–404. doi:10.1016/j.ejps.2009.03.009

    Article  CAS  Google Scholar 

  • Müller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19. doi:10.1016/S0169-409X(00)00118-6

    Article  PubMed  Google Scholar 

  • Nerurkar MM, Bueto PS, Borchardt RT (1996) The use of surfactants to enhance the permeability of peptides through Caco-2 cells by inhibition of an apically polarized efflux system. Pharm Res 13:528–534. doi:10.1023/A:1016033702220

    Article  CAS  PubMed  Google Scholar 

  • Olivier JC (2005) Drug transport to brain with targeted nanoparticles. Am Soc Exp Neuro Ther 2:108–119 PMCID: PMC539329

    Google Scholar 

  • Pak Y, Patek R, Mayersohn M (2003) Sensitive and rapid isocratic liquid chromatography method for the quantitation of curcumin in plasma. J Chromatogr B 796:339–346. doi:10.1016/j.jchromb.2003.08.018

    Article  CAS  Google Scholar 

  • Pan MH, Huang TM, Lin JK (1998) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27:486–494. doi:0090-9556/99/2704-0486-0494

    Google Scholar 

  • Pardridge WM (2002) Drug and gene delivery to the brain: the vascular route. Neuron 36:555–558. doi:10.1016/S0896-6273(02)01054-1

    Article  CAS  PubMed  Google Scholar 

  • Petri B, Bootz A, Khalansky A, Hekmatara T, Müller R, Uhl R, Kreuter J, Gelperina S (2007) Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release 117:51–58. doi:10.1016/j.jconrel.2006.10.015

    Article  CAS  PubMed  Google Scholar 

  • Purkayasthaa S, Berliner A, Fernando SS, Ranasinghe B, Ray I, Tariq H, Banerjee P (2009) Curcumin blocks brain tumor formation. Brain Res 1266:130–138. doi:10.1016/j.brainres.2009.01.066

    Article  Google Scholar 

  • Ramge P, Unger RE, Oltrogge JB, Zenker D, Begley DJ, Kreuter J, VonBriesen H (2000) Polysorbate 80 coating enhances uptake of polybutylcyanoacrylate (PBCA) nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci 12:1931–1940. doi:10.1046/j.1460-9568.2000.00078.x

    Article  CAS  PubMed  Google Scholar 

  • Reddy LH, Murthy RR (2004) Influence of polymerization technique and experimental variables on the particle properties and release kinetics of methotrexate from poly (butylcyanoacrylate) nanoparticles. Acta Pharm 54:103–118. http://scholar.google.cn/scholar

    Google Scholar 

  • Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL (2005) A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2:131–136 PMCID: PMC1702408

    Article  CAS  PubMed  Google Scholar 

  • Schroeder U, Sommerfeld P, Ulrich S, Sabel BA (1998) Nanoparticle technology for delivery of drugs across the blood–brain barrier. J Pharm Sci 87:1305–1307. doi:10.1021/js980084y

    Article  CAS  PubMed  Google Scholar 

  • Simeonova M, Ivanova G, Enchev V, Markov N, Kamburov M, Petkov C, Devery A, Connor R, Brougham D (2009) Physicochemical characterization and in vitro behavior of daunorubicin-loaded poly(butylcyanoacrylate) nanoparticles. Acta Biomater 5:2109–2121. doi:10.1016/j.actbio.2009.01.026

    Article  CAS  PubMed  Google Scholar 

  • Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, Severin SE, Uhl R, Kock M, Geiger KD, Gelperina SE (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767. doi:10.1002/ijc.20048

    Article  CAS  PubMed  Google Scholar 

  • Sullivan CO, Birkinshaw C (2004) In vitro degradation of insulin-loaded poly (n-butylcyanoacrylate) nanoparticles. Biomaterials 25:4375–4382. doi:10.1016/j.biomaterials.2003.11.001

    Article  CAS  PubMed  Google Scholar 

  • Sun WQ, Xie CS, Wang HF, Hu Y (2004) Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials 25:3065–3071. doi:10.1016/j.biomaterials.2003.09.087

    Article  CAS  PubMed  Google Scholar 

  • Sun WT, Zhang N, Li AG, Zou WW, Xu WF (2008) Preparation and evaluation of N3-O-toluyl-fluorouracil-loaded liposomes. Int J Pharm 353:243–250. doi:10.1016/j.ijpharm.2007.11.017

    Article  CAS  PubMed  Google Scholar 

  • Tonnesen HH, Masson M, Loftsson T (2002) Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm 244:127–135. doi:10.1016/S0378-5173(02)00323-X

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–147. doi:10.1016/S0169-409X(01)00245-9

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed 15:1867–1876. doi:10.1016/S0731-7085(96)02024-9

    Article  CAS  Google Scholar 

  • Wang CX, Huang LS, Hou LB, Jiang L, Yan ZT, Wang LY, Liang Z (2008) Antitumor effects of polysorbate-80 coated gemcitabine polybutylcyanoacrylate nanoparticles in vitro and its pharmacodynamics in vivo on C6 glioma cells of a brain tumor model. Brain Res 1200:159–168. doi:10.1016/j.brainres.2009.01.011

    Article  Google Scholar 

  • Wang JL, Wang R, Li LB (2009) Preparation and properties of hydroxycamptothecin-loaded nanoparticles made of amphiphilic copolymer and normal polymer. J Colloid Interface Sci 336:808–813. doi:10.1016/j.jcis.2009.04.080

    Article  CAS  PubMed  Google Scholar 

  • Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B (2008a) Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 1200:159–168. doi:10.1016/j.brainres.2008.01.039

    Article  CAS  PubMed  Google Scholar 

  • Wilson B, Sampath KP, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B (2008b) Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur Pharm Biopharm 70:75–84. doi:10.1016/j.ejpb.2008.03.009

    Article  CAS  Google Scholar 

  • Wolberg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol 38:323–337. doi:10.1016/S1537-1891(02)00200-8

    Article  Google Scholar 

  • Woodcock DM, Linsenmeyer ME, Chojnowski G, Kriegler AB, Nink V, Sawyer WH, Webster LK (1992) Reversal of multidrug resistance by surfactants. Br J Cancer 66:62–68 PMCID: PMC1977900

    CAS  PubMed  Google Scholar 

  • Xiao YY, Song YM, Chen ZP, Ping QN (2006) Preparation of silymarin proliposome: a new way to increase oral bioavailability of silymarin in beagle dogs. Int J Pharm 352:273–279. doi:10.1016/j.ijpharm.2006.03.037

    Google Scholar 

  • Ye JS, Wang Q, Zhou XF, Na Z (2008) Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int J Pharm 319:162–168. doi:10.1016/j.ijpharm.2007.10.014

    Google Scholar 

  • Zhu WW, Yu AH, Wang WH, Dong RQ, Wu J, Zhai GX (2008) Formulation design of microemulsion for dermal delivery of penciclovir. Int J Pharm 360:184–190. doi:10.1016/j.ijpharm.2008.04.008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxi Zhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, M., Gao, Y., Guo, C. et al. Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle. J Nanopart Res 12, 3111–3122 (2010). https://doi.org/10.1007/s11051-010-9907-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9907-4

Keywords

Navigation