Skip to main content
Log in

Mutual Influence of Mannitol and Trehalose on Crystallization Behavior in Frozen Solutions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Phase separation of trehalose during freeze-drying could render it ineffective as a lyoprotectant. The bulking agent, mannitol, on the other hand, should crystallize readily upon freezing. It is therefore imperative to understand the mutual interaction of these sugars during freezing to ensure preservation of the API during freeze-drying.

Methods

We investigated the effect of mannitol to trehalose ratio (R) on the crystallization behavior of both solutes using Differential Scanning Calorimetry, X-Ray Crystallography and FTIR Spectrosopy during controlled freezing and annealing.

Results

When R = 1, crystallization of both mannitol (as hemihydrate) and trehalose (as α-anhydrate) were observed. When R ≥ 1, extent of mannitol crystallization was directly proportional to the value of R. When R < 1, trehalose completely suppressed mannitol crystallization. At R > 1, the freeze concentrate was heterogeneous and characterized by two glass transitions – the lower temperature transition (Tg”) attributed to systems containing “extra” unfrozen water. When heated above Tg”, crystallization of mannitol and the associated unfrozen water resulted in Tg’ (glass transition temperature of the freeze-concentrate).

Conclusions

R and not the total solute concentration, dictates the composition of the freeze concentrate as well as the physical stability of the excipients

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

DSC:

Differential scanning calorimetry

FCL:

Freeze-concentrated liquid

FTIR:

Fourier transform infrared spectroscopy

IR:

Infrared

XRD:

Powder X-ray Diffractometry

References

  1. Carpenter JF, Pikal MJ, Chang BS, Randolph TW. Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res. 1997;14(8):969–75.

    Article  CAS  PubMed  Google Scholar 

  2. K-i I, Yoshioka S, Terao T. Decreased protein-stabilizing effects of cryoprotectants due to crystallization. Pharm Res. 1993;10(8):1232–7.

    Article  Google Scholar 

  3. Ken-ichi I, Sumie Y, Yasushi T. The effects of additives on the stability of freeze-dried β-galactosidase stored at elevated temperature. Int J Pharm. 1991;71(1):137–46.

    Article  Google Scholar 

  4. Chatterjee K, Shalaev EY, Suryanarayanan R. Partially crystalline systems in lyophilization: II. Withstanding collapse at high primary drying temperatures and impact on protein activity recovery. J Pharm Sci. 2005;94(4):809–20.

    Article  CAS  PubMed  Google Scholar 

  5. Chatterjee K, Shalaev EY, Suryanarayanan R. Partially crystalline systems in lyophilization: I. Use of ternary state diagrams to determine extent of crystallization of bulking agent. J Pharm Sci. 2005;94(4):798–808.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson RE, Kirchhoff CF, Gaud HT. Mannitol–sucrose mixtures—versatile formulations for protein lyophilization. J Pharm Sci. 2002;91(4):914–22.

    Article  CAS  PubMed  Google Scholar 

  7. Tang XC, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  8. Wang DQ, Hey JM, Nail SL. Effect of collapse on the stability of freeze‐dried recombinant factor VIII and α‐amylase. J Pharm Sci. 2004;93(5):1253–63.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou R, Schlam RF, Yin S, Gandhi RB, Adams ML. Scale considerations for selection of saccharide excipients for liquid formulations. J Pharm Sci. 2011;100(4):1605–6.

    Article  CAS  PubMed  Google Scholar 

  10. Varshney DB, Kumar S, Shalaev EY, Sundaramurthi P, Kang S-W, Gatlin LA, et al. Glycine crystallization in frozen and freeze-dried systems: effect of pH and buffer concentration. Pharm Res. 2007;24(3):593–604.

    Article  CAS  PubMed  Google Scholar 

  11. Varshney DB, Sundaramurthi P, Kumar S, Shalaev EY, Kang S-W, Gatlin LA, et al. Phase transitions in frozen systems and during freeze–drying: quantification using synchrotron X-Ray diffractometry. Pharm Res. 2009;26(7):1596–606.

    Article  CAS  PubMed  Google Scholar 

  12. Sundaramurthi P, Shalaev E, Suryanarayanan R. “pH swing” in frozen solutions consequence of sequential crystallization of buffer components. J Phys Chem Lett. 2009;1(1):265–8.

    Article  Google Scholar 

  13. Szkudlarek BA. Selective crystallization of phosphate buffer components and pH changes during freezing: implications to protein stability: university of Michigan. 1997.

    Google Scholar 

  14. Carpenter JF, Prestrelski SJ, Arakawa T. Separation of freezing-and drying-induced denaturation of lyophilized proteins using stress-specific stabilization: I. Enzyme activity and calorimetric studies. Arch Biochem Biophys. 1993;303(2):456–64.

    Article  CAS  PubMed  Google Scholar 

  15. Piedmonte DM, Summers C, McAuley A, Karamujic L, Ratnaswamy G. Sorbitol crystallization can lead to protein aggregation in frozen protein formulations. Pharm Res. 2007;24(1):136–46.

    Article  CAS  PubMed  Google Scholar 

  16. Sundaramurthi P, Patapoff TW, Suryanarayanan R. Crystallization of trehalose in frozen solutions and its phase behavior during drying. Pharm Res. 2010;27(11):2374–83.

    Article  CAS  PubMed  Google Scholar 

  17. Sundaramurthi P, Shalaev E, Suryanarayanan R. Calorimetric and diffractometric evidence for the sequential crystallization of buffer components and the consequential pH swing in frozen solutions. J Phys Chem B. 2010;114(14):4915–23.

    Article  CAS  PubMed  Google Scholar 

  18. Sundaramurthi P, Suryanarayanan R. Trehalose crystallization during freeze-drying: implications on lyoprotection. J Phys Chem Lett. 2009;1(2):510–4.

    Article  Google Scholar 

  19. Sundaramurthi P, Suryanarayanan R. Influence of crystallizing and non-crystallizing cosolutes on trehalose crystallization during freeze-drying. Pharm Res. 2010;27(11):2384–93.

    Article  CAS  PubMed  Google Scholar 

  20. Lu X, Pikal MJ. Freeze‐Drying of Mannitol–Trehalose–Sodium Chloride‐Based Formulations: The Impact of Annealing on Dry Layer Resistance to Mass Transfer and Cake Structure. Pharm Dev Technol. 2004;9(1):85–95.

    Article  CAS  PubMed  Google Scholar 

  21. Crowe JH, Crowe LM, Carpenter JF, Wistrom CA. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J. 1987;242(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995;61(10):3592–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun WQ, Leopold AC, Crowe LM, Crowe JH. Stability of dry liposomes in sugar glasses. Biophys J. 1996;70(4):1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Esteves MI, Quintilio W, Sato RA, Raw I, De Araujo PS, Da Costa MHB. Stabilisation of immunoconjugates by trehalose. Biotechnol Lett. 2000;22(5):417–20.

    Article  CAS  Google Scholar 

  25. Singh SK, Kolhe P, Mehta AP, Chico SC, Lary AL, Huang M. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding. Pharm Res. 2011;28(4):873–85.

    Article  CAS  PubMed  Google Scholar 

  26. Liao X, Krishnamurthy R, Suryanarayanan R. Influence of processing conditions on the physical state of mannitol—implications in freeze-drying. Pharm Res. 2007;24(2):370–6.

    Article  CAS  PubMed  Google Scholar 

  27. Archer D. New NIST-traceable standards for calibration and validation of DSC. J Therm Anal Calorim. 2006;85(1):131–4.

    Article  CAS  Google Scholar 

  28. Cavatur RK, Vemuri NM, Pyne A, Chrzan Z, Toledo-Velasquez D, Suryanarayanan R. Crystallization behavior of mannitol in frozen aqueous solutions. Pharm Res. 2002;19(6):894–900.

    Article  CAS  PubMed  Google Scholar 

  29. Burger A, Henck JO, Hetz S, Rollinger JM, Weissnicht AA, Stoettner H. Energy/temperature diagram and compression behavior of the polymorphs of D‐mannitol. J Pharm Sci. 2000;89(4):457–68.

    Article  CAS  PubMed  Google Scholar 

  30. Rudnick J, Taylor P, Litt M, Hopfinger A. Theory of free volume in polymers. J Polym Sci Polym Phys Ed. 1979;17(2):311–20.

    Article  CAS  Google Scholar 

  31. Her L-M, Nail SL. Measurement of glass transition temperatures of freeze-concentrated solutes by differential scanning calorimetry. Pharm Res. 1994;11(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  32. Pyne A, Surana R, Suryanarayanan R. Crystallization of mannitol below Tg′ during freeze-drying in binary and ternary aqueous systems. Pharm Res. 2002;19(6):901–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kim AI, Akers MJ, Nail SL. The physical state of mannitol after freeze‐drying: Effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. J Pharm Sci. 1998;87(8):931–5.

    Article  CAS  PubMed  Google Scholar 

  34. Pyne A, Surana R, Suryanarayanan R. Enthalpic relaxation in frozen aqueous trehalose solutions. Thermochim Acta. 2003;405(2):225–34.

    Article  CAS  Google Scholar 

  35. Powder Diffraction File. Hexagonal ice, card # 00-042-1142; D-trehalose dihydrate, card # 00-029-1955; trehalose anhydrate, card # 00-003-0312;β-D-mannitol, card # 00-022-1797; δ-D-mannitol, card # 00-022-1794. In.Powder Diffraction File. Newtown Square; 2004.

  36. Toffel-Nadolny P. Infrared spectroscopic determinations of mannitol. Arch Kriminol. 1980;168(5–6):133–8.

    Google Scholar 

  37. Carpenter JF, Crowe JH. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry. 1989;28(9):3916–22.

    Article  CAS  PubMed  Google Scholar 

  38. Belton P, Gil A. IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers. 1994;34(7):957–61.

    Article  CAS  PubMed  Google Scholar 

  39. Lin S-Y, Chien J-L. In vitro simulation of solid-solid dehydration, rehydration, and solidification of trehalose dihydrate using thermal and vibrational spectroscopic techniques. Pharm Res. 2003;20(12):1926–31.

    Article  CAS  PubMed  Google Scholar 

  40. Ragoonanan V, Aksan A. Heterogeneity in desiccated solutions: implications for biostabilization. Biophys J. 2008;94(6):2212–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wolkers WF, Oliver AE, Tablin F, Crowe JH. A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydr Res. 2004;339(6):1077–85.

    Article  CAS  PubMed  Google Scholar 

  42. Nicolajsen H, Hvidt A. Phase behavior of the system trehalose-NaCl-water. Cryobiology. 1994;31(2):199–205.

    Article  CAS  Google Scholar 

  43. Green JL, Angell CA. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J Phys Chem. 1989;93(8):2880–2.

    Article  CAS  Google Scholar 

  44. Miller DP, de Pablo JJ, Corti H. Thermophysical properties of trehalose and its concentrated aqueous solutions. Pharm Res. 1997;14(5):578–90.

    Article  CAS  PubMed  Google Scholar 

  45. Mullin JW. Crystallization. Burlington: Elsevier Butterworth-Heinemann; 2001.

    Google Scholar 

  46. Luyet B, Rasmussen D. Study by differential thermal analysis of the temperatures of instability of rapidly cooled solutions of glycerol, ethylene glycol, sucrose and glucose. Biodynamica. 1967;10(210):167–91.

    Google Scholar 

  47. Liao X, Krishnamurthy R, Suryanarayanan R. Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol—implications in freeze-drying. Pharm Res. 2005;22(11):1978–85.

    Article  CAS  PubMed  Google Scholar 

  48. Sussich F, Skopec C, Brady J, Cesàro A. Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? Carbohydr Res. 2001;334(3):165–76.

    Article  CAS  PubMed  Google Scholar 

  49. Malsam J, Aksan A. Hydrogen bonding and kinetic/thermodynamic transitions of aqueous trehalose solutions at cryogenic temperatures. J Phys Chem B. 2009;113(19):6792–9.

    Article  CAS  PubMed  Google Scholar 

  50. Elias ME, Elias AM. Trehalose + water fragile system: properties and glass transition. J Mol Liq. 1999;83(1):303–10.

    Article  CAS  Google Scholar 

  51. Kawai H, Sakurai M, Inoue Y, Chujo R, Kobayashi S. Hydration of oligosaccharides: anomalous hydration ability of trehalose. Cryobiology. 1992;29(5):599–606.

    Article  CAS  PubMed  Google Scholar 

  52. Magazu S, Migliardo P, Musolino AM, Sciortino MT. α, α-Trehalose-water solutions. 1. Hydration phenomena and anomalies in the acoustic properties. J Phys Chem B. 1997;101(13):2348–51.

    Article  CAS  Google Scholar 

  53. Brown GM, Levy HA. α-D-glucose: precise determination of crystal and molecular structure by neutron-diffraction analysis. Science. 1965;147(3661):1038–9.

    Article  CAS  PubMed  Google Scholar 

  54. Brown GM, Rohrer DC, Berking B, Beevers CA, Gould RO, Simpson R. The crystal structure of α, α-trehalose dihydrate from three independent X-ray determinations. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem. 1972;28(11):3145–58.

    Article  CAS  Google Scholar 

  55. Jeffrey GA. Intramolecular hydrogen-bonding in carbohydrate crystal-structures. Carbohydr Res. 1973;28(2):233–41.

    Article  CAS  Google Scholar 

  56. Bennett AN, Bennett AR, Nees AR. Viscosity of beet house sirups. Ind Eng Chem. 1930;22(1):91–6.

    Article  CAS  Google Scholar 

  57. Miller DP, de Pablo JJ. Calorimetric solution properties of simple saccharides and their significance for the stabilization of biological structure and function. J Phys Chem B. 2000;104(37):8876–83.

    Article  CAS  Google Scholar 

  58. Km L, Labuza TP. Crystallization inhibition of an amorphous sucrose system using raffinose. J Zhejiang Univ (Sci). 2006;2:67–79.

    Google Scholar 

  59. Laos AK, Kirs BE, Kikkas CA, Paalme DT. Crystallization of the supersaturated sucrose solutions in the presence of fructose, glucose and corn syrup. In.; 2007. p. 16–20.

  60. Leinen KM, Labuza TP. Crystallization inhibition of an amorphous sucrose system using raffinose. J Zhejiang Univ Sci B. 2006;7(2):85–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smythe BM. Sucrose crystal growth. II. Rate of crystal growth in the presence of impurities. Aust J Chem. 1967;20(6):1097–114.

    Article  CAS  Google Scholar 

  62. Laliberté M. Model for calculating the viscosity of aqueous solutions. J Chem Eng Data. 2007;52(2):321–35.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was funded by an NSF grant (CBET-1335936) to A.A. The authors are grateful to Dr. Seema Thakral for guidance while performing the powder X-ray diffraction. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alptekin Aksan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, S., Suryanarayanan, R. & Aksan, A. Mutual Influence of Mannitol and Trehalose on Crystallization Behavior in Frozen Solutions. Pharm Res 33, 1413–1425 (2016). https://doi.org/10.1007/s11095-016-1883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1883-7

Key Words

Navigation