Skip to main content
Log in

Influence of Processing Conditions on the Physical State of Mannitol—Implications in Freeze-Drying

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study the effect of processing conditions on the physical state of mannitol during various stages of the lyophilization cycle of a protein formulation.

Materials and Methods

Mannitol and trehalose were used as the bulking agent and lyoprotectant, respectively. The physical state of mannitol during various stages of freeze-drying cycle, in the absence and presence of a model protein, was characterized using low temperature X-ray powder diffractometry (XRD) and differential scanning calorimetry (DSC).

Results

Mannitol did not crystallize even when the solution for lyophilization was cooled to −45°C at a slow cooling rate of 1°C/min. Annealing facilitated mannitol crystallization, and in the absence of the protein, a mixture of δ-mannitol and mannitol hemihydrate was obtained at both low (−18°C) and high (−8°C) annealing temperatures. However, in the presence of protein, the high annealing temperature promoted δ-mannitol crystallization and inhibited formation of mannitol hemihydrate, while the low annealing temperature facilitated the formation of mannitol hemihydrate. Interestingly, the hemihydrate in the frozen solution was retained in the final lyophile, even when the primary and secondary drying temperatures were as high as −5 and 65°C, respectively.

Conclusions

The presence of protein as well as the processing conditions (annealing temperature and time, primary and secondary drying temperatures) influenced the physical form of mannitol in the final lyophile. The protein promoted formation of δ-mannitol while inhibiting the formation of mannitol hemihydrate. Since the physical form of mannitol was greatly influenced by the presence of protein, it will be prudent to conduct the preliminary lyophilization cycle development studies in the presence of the protein. If mannitol hemihydrate is formed during annealing, its dehydration may require high secondary drying temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Q. Wang, J. M. Hey, and S. L. Nail. Effect of collapse on the stability of freeze-dried recombinant factor VIII and a-amylase. J. Pharm. Sci. 93:1253–1263 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. R. E. Johnson, C. F. Kirchhoff, and H. T. Gaud. Mannitol–sucrose mixtures—versatile formulations for protein lyophilization. J. Pharm. Sci. 91:914–922 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. K. Izutsu, S. Yoshioka, and T. Terao. Decreased protein-stabilizing effects of cryoprotectants due to crystallization. Pharm. Res. 10:1232–1237 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. A. I. Kim, M. J. Akers, and S. L. Nail. The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. J. Pharm. Sci. 87: 931–935 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. S. Torrado and S. Torrado. Characterization of physical state of mannitol after freeze-drying: effect of acetylsalicylic acid as a second crystalline cosolute. Chem. Pharm. Bull. 50:567–570 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. R. K. Cavatur, N. M. Vemuri, A. Pyne, Z. Chrzan, D. Toledo-Velasquez, and R. Suryanarayanan. Crystallization behavior of mannitol in frozen aqueous solutions. Pharm. Res. 19:894–900 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. A. J. Cannon and E. H. Trappler. The influence of lyophilization on the polymorphic behavior of mannitol. PDA J. Pharm. Sci. Technol. 54:13–22 (2000).

    PubMed  CAS  Google Scholar 

  8. R. Haikala, R. Eerola, V. P. Tanninen, and J. Yliruusi. Polymorphic changes of mannitol during freeze-drying: effect of surface-active agents. PDA J. Pharm. Sci. Technol. 51:96–101 (1997).

    PubMed  CAS  Google Scholar 

  9. L. Yu, N. Milton, E. G. Groleau, D. S. Mishra, and R. E. Vansickle. Existence of a mannitol hydrate during freeze-drying and practical implications. J. Pharm. Sci. 88:196–198 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. A. Pyne, K. Chatterjee, and R. Suryanarayanan. Solute crystallization in mannitol–glycine systems—implications on protein stabilization in freeze-dried formulations. J. Pharm. Sci. 92:2272–2283 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. C. Telang, L. Yu, and R. Suryanarayanan. Effective inhibition of mannitol crystallization in frozen solutions by sodium chloride. Pharm. Res. 20:660–667 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. X. Liao, R. Krishnamurthy, and R. Suryanarayanan. Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol-implications in freeze-drying. Pharm. Res. 22:1978–1985 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. E. Leikina, M. V. Mertts, N. Kuznetsova, and S. Leikin. Type I collagen is thermally unstable at body temperature. Proc. Natl. Acad. Sci. U. S. A. 99:1314–1318 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. J. C. Bischof and X. He. Thermal stability of proteins. Ann. N.Y. Acad Sci. 1066:12–33 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. A. Pyne, K. Chatterjee, and R. Suryanarayanan. Crystalline to amorphous transition of disodium hydrogen phosphate during primary drying. Pharm. Res. 20:802–803 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. S. Chongprasert, U. J. Griesser, A. T. Bottorff, N. A. Williams, S. R. Byrn, and S. L. Nail. Effects of freeze-dry processing conditions on the crystallization of pentamidine isethionate. J. Pharm. Sci. 87:1155–1160. (1998).

    Article  PubMed  CAS  Google Scholar 

  17. A. Pyne and R. Suryanarayanan. Phase transitions of glycine in frozen aqueous solutions and during freeze-drying. Pharm. Res. 18:1448–1454 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. W. Wang, Y. Ou, and Y. Shi. AlbuBNP, a recombinant B-type natriuretic peptide and human serum albumin fusion hormone, as a long-term therapy of congestive heart failure. Pharm. Res. 21:2105–2111 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. B. L. Osborn, L. Sekut, M. Corcoran, C. Poortman, B. Sturm, G. Chen, D. Mather, H. L. Lin, and T. J. Parry. Albutropin: a growth hormone–albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys. Eur. J. Pharmacol. 456:149–158 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. B. L. Osborn, H. S. Olsen, B. Nardelli, J. H. Murray, J. X. H. Zhou, A. Garcia, G. Moody, L. S. Zaritskaya, and C. Sung. Pharmacokinetic and pharmacodynamic studies of a human serum albumin–interferon—a fusion protein in cynomolgus monkeys. J. Pharmacol. Exp. Ther. 303:540–548 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. A. Pyne, R. Surana, and R. Suryanarayanan. Crystallization of mannitol below Tg′ during freeze-drying in binary and ternary aqueous systems. Pharm. Res. 19:901–908 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Suryanarayanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, X., Krishnamurthy, R. & Suryanarayanan, R. Influence of Processing Conditions on the Physical State of Mannitol—Implications in Freeze-Drying. Pharm Res 24, 370–376 (2007). https://doi.org/10.1007/s11095-006-9158-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9158-3

Key words

Navigation