Skip to main content
Log in

Drug Release from ß-Cyclodextrin Complexes and Drug Transfer into Model Membranes Studied by Affinity Capillary Electrophoresis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Is to characterize the drug release from the ß-cyclodextrin (ß-CD) cavity and the drug transfer into model membranes by affinity capillary electrophoresis. Phospholipid liposomes with and without cholesterol were used to mimic the natural biological membrane.

Methods

The interaction of cationic and anionic drugs with ß-CD and the interaction of the drugs with liposomes were detected separately by measuring the drug mobility in ß-CD containing buffer and liposome containing buffer; respectively. Moreover, the kinetics of drug release from ß-CD and its transfer into liposomes with or without cholesterol was studied by investigation of changes in the migration behaviours of the drugs in samples, contained drug, ß-CD and liposome, at 1:1:1 molar ratio at different time intervals; zero time, 30 min, 1, 2, 4, 6, 8, 10 and 24 h. Lipophilic drugs such as propranolol and ibuprofen were chosen for this study, because they form complexes with ß-CD.

Results

The mobility of the both drug liposome mixtures changed with time to a final state. For samples of liposomal membranes with cholesterol the final state was faster reached than without cholesterol.

Conclusions

The study confirmed that the drug release from the CD cavity and its transfer into the model membrane was more enhanced by the competitive displacement of the drug from the ß-CD cavity by cholesterol, the membrane component. The ACE method here developed can be used to optimize the drug release from CD complexes and the drug transfer into model membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACE:

Affinity capillary electrophoresis

CD:

Cyclodextrin

IBU:

Ibuprofen

LD :

The distance from the capillary inlet to the detector

LT :

The total length of the capillary

PC:

Phosphatidylcholine

Pro:

Propranolol

PS:

Phosphatidylserine

tEOF :

The migration time of electroosmotic flow peak

tm :

The migration time of drug peak

U:

The applied voltage

References

  1. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017–25.

    Article  CAS  PubMed  Google Scholar 

  2. Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J Pharm Sci. 1996;85(11):1142–69.

    Article  CAS  PubMed  Google Scholar 

  3. Loftsson T, Masson M. Cyclodextrins in topical drug formulations: theory and practice. Int J Pharm. 2001;225(1–2):15–30.

    Article  CAS  PubMed  Google Scholar 

  4. Stella VJ, Rajewski RA. Cyclodextrins: their future in drug formulation and delivery. Pharm Res. 1997;14(5):556–67.

    Article  CAS  PubMed  Google Scholar 

  5. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev. 1998;98(5):2045–76.

    Article  CAS  PubMed  Google Scholar 

  6. Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;6(2):E329–57.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Loftsson T, Stefánsson E. Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev Ind Pharm. 1997;23(5):473–81.

    Article  CAS  Google Scholar 

  8. Stella VJ, Rao VM, Zannou EA, Zia VV. Mechanisms of drug release from cyclodextrin complexes. Adv Drug Deliv Rev. 1999;36(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  9. Loftsson T, Vogensen SB, Brewster ME, Konradsdottir F. Effects of cyclodextrins on drug delivery through biological membranes. J Pharm Sci. 2007;96(10):2532–46.

    Article  CAS  PubMed  Google Scholar 

  10. Tokumura T, Tsushima Y, Kayano M, Machida Y, Nagai T. Enhancement of bioavailability of cinnarizine from its beta-cyclodextrin complex on oral administration with DL-phenylalanine as a competing agent. J Pharm Sci. 1985;74(4):496–7.

    Article  CAS  PubMed  Google Scholar 

  11. Legendre JY, Rault I, Petit A, Luijten W, Demuynck I, Horvath S, et al. Effects of β-cyclodextrins on skin: implications for the transdermal delivery of piribedil and a novel cognition enhancing-drug, S-9977. Eur J Pharm Sci. 1995;3(6):311–22.

    Article  CAS  Google Scholar 

  12. Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta. 2007;1768(6):1311–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Besenicar MP, Bavdek A, Kladnik A, Macek P, Anderluh G. Kinetics of cholesterol extraction from lipid membranes by methyl-beta-cyclodextrin--a surface plasmon resonance approach. Biochim Biophys Acta. 2008;1778(1):175–84.

    Article  CAS  PubMed  Google Scholar 

  14. Piel G, Piette M, Barillaro V, Castagne D, Evrard B, Delattre L. Study of the relationship between lipid binding properties of cyclodextrins and their effect on the integrity of liposomes. Int J Pharm. 2007;338(1–2):35–42.

    Article  CAS  PubMed  Google Scholar 

  15. Frijlink H, Eissens A, Hefting N, Poelstra K, Lerk C, Meijer DF. The effect of parenterally administered cyclodextrins on cholesterol levels in the rat. Pharm Res. 1991;8(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  16. Mouritsen OG, Jorgensen K. A new look at lipid-membrane structure in relation to drug research. Pharm Res. 1998;15(10):1507–19.

    Article  CAS  PubMed  Google Scholar 

  17. Lagerquist C, Beigi F, Karlen A, Lennernas H, Lundahl P. Effects of cholesterol and model transmembrane proteins on drug partitioning into lipid bilayers as analysed by immobilized-liposome chromatography. J Pharm Pharmacol. 2001;53(11):1477–87.

    Article  CAS  PubMed  Google Scholar 

  18. Wiedmer SK, Riekkola M-L, Jussila MS. Phospholipids and liposomes in liquid chromatographic and capillary electromigration techniques. Trends Anal Chem. 2004;23(8):562–82.

    Article  CAS  Google Scholar 

  19. Wang Y, Sun J, Liu H, Wang Y, He Z. Prediction of human drug absorption using liposome electrokinetic chromatography. Chromatographia. 2007;65(3–4):173–7.

    Article  Google Scholar 

  20. Wang Y, Sun J, Liu H, Liu J, Zhang L, Liu K, et al. Predicting skin permeability using liposome electrokinetic chromatography. Analyst. 2009;134(2):267–72.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Zhang R, Hjerten S, Lundahl P. Liposome capillary electrophoresis for analysis of interactions between lipid bilayers and solutes. Electrophoresis. 1995;16(8):1519–23.

    Article  CAS  PubMed  Google Scholar 

  22. Rüttinger H-H. Theory of affinity electrophoresis. In: Neubert R, Rüttinger H-H, editors. Affinity capillary electrophoresis in pharmaceutics and biopharmaceutics. Hoboken: Informa Healthcare; 2003. p. 23–34.

    Google Scholar 

  23. Castronuovo G, Niccoli M. Thermodynamics of inclusion complexes of natural and modified cyclodextrins with propranolol in aqueous solution at 298 K. Bioorg Med Chem. 2006;14(11):3883–7.

    Article  CAS  PubMed  Google Scholar 

  24. Bisby RH, Botchway SW, Crisostomo AG, Karolin J, Parker AW, Schröder L. Interactions of the β-blocker drug, propranolol, with detergents, β-cyclodextrin and living cells studied using fluorescence spectroscopy and imaging. Spectroscopy. 2010;24(1–2):137–42.

    Article  CAS  Google Scholar 

  25. Ghorab MK, Adeyeye MC. Enhancement of ibuprofen dissolution via wet granulation with beta-cyclodextrin. Pharm Dev Technol. 2001;6(3):305–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinda A. Darwish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darwish, K.A., Mrestani, Y., Rüttinger, HH. et al. Drug Release from ß-Cyclodextrin Complexes and Drug Transfer into Model Membranes Studied by Affinity Capillary Electrophoresis. Pharm Res 33, 1175–1181 (2016). https://doi.org/10.1007/s11095-016-1862-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1862-z

KEY WORDS

Navigation