Skip to main content
Log in

Quantitative In Vitro Assessment of Liposome Stability and Drug Transfer Employing Asymmetrical Flow Field-Flow Fractionation (AF4)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In the present study we introduce an efficient approach for a size-based separation of liposomes from plasma proteins employing AF4. We investigated vesicle stability and release behavior of the strongly lipophilic drug temoporfin from liposomes in human plasma for various incubation times at 37°C.

Methods

We used the radioactive tracer cholesteryl oleyl ether (COE) or dipalmitoyl-phosphocholine (DPPC) as lipid markers and 14C-labeled temoporfin. First, both lipid labels were examined for their suitability as liposome markers. Furthermore, the influence of plasma origin on liposome stability and drug transfer was investigated. The effect of membrane fluidity and PEGylation on vesicle stability and drug release characteristics was also analyzed.

Results

Surprisingly, we observed an enzymatic transfer of 3H-COE to lipoproteins due to the cholesterol ester transfer protein (CETP) in human plasma in dependence on membrane rigidity and were able to inhibit this transfer by plasma preincubation with the CETP inhibitor torcetrapib. This effect was not seen when liposomes were incubated in rat plasma. DPPC labels suffered from hydrolysis effects during preparation and/or storage. Fluid liposomes were less stable in human plasma than their PEGylated analogues or a rigid formulation. In contrast, the transfer of the incorporated drug to lipoproteins was higher for the rigid formulations.

Conclusions

The observed effects render COE-labels questionable for in vivo studies using CEPT-rich species. Here, choline labelled 14C-DPPC was found to be the most promising alternative. Bilayer composition has a high influence on stability and drug release of a liposomal formulation in human plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AF4:

Asymmetrical flow field-flow fractionation

CETP:

Cholesteryl ester transfer protein

COE:

Cholesteryl oleyl ether

DLS:

Dynamic light scattering

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

DPPG:

1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol, sodium salt

EPC:

L-α-phosphatidylcholine (Egg Chicken)

EPG:

L-α-phosphatidylglycerol, sodium salt (Egg, Chicken)

EPR:

Enhanced permeation and retention

HDL:

High density lipoprotein

LDL:

Low density lipoprotein

MALLS:

Multi angle laser-light scattering

mTHPC:

Temoporfin

PCS:

Photon correlation spectroscopy

RES:

Reticuloendothelial system

VLDL:

Very low density lipoprotein

References

  1. Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv. 2007;4(4):403–16.

    Article  CAS  PubMed  Google Scholar 

  2. Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol. 1964;8:660–8.

    Article  CAS  PubMed  Google Scholar 

  3. Hoogevest PV, Leigh M, Fahr A. Liposomes as intravenous solubilizers for poorly water-soluble drugs. drug delivery strategies for poorly water-soluble drugs. Chichester: Wiley; 2013. p. 37–66.

    Book  Google Scholar 

  4. van Hoogevest P, Liu X, Fahr A, Leigh MLS. Role of phospholipids in the oral and parenteral delivery of poorly water soluble drugs. J Drug Deliv Sci Tec. 2011;21(1):5–16.

    Article  Google Scholar 

  5. Decker C, Schubert H, May S, Fahr A. Pharmacokinetics of temoporfin-loaded liposome formulations: correlation of liposome and temoporfin blood concentration. J Control Release. 2013;166(3):277–85.

    Article  CAS  PubMed  Google Scholar 

  6. Scherphof G, Morselt H. On the size-dependent disintegration of small unilamellar phosphatidylcholine vesicles in rat plasma - evidence of complete loss of vesicle structure. Biochem J. 1984;221(2):423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaess K, Fahr A. Liposomes as solubilizers for lipophilic parenteral drugs: transfer of drug and lipid marker to plasma proteins. Eur J Lipid Sci Tech. 2014;116(9):1137–44.

    Article  CAS  Google Scholar 

  8. Guo LSS, Hamilton RL, Goerke J, Weinstein JN, Havel RJ. Interaction of unilamellar liposomes with serum-lipoproteins and apolipoproteins. J Lipid Res. 1980;21(8):993–1003.

    CAS  PubMed  Google Scholar 

  9. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed. 2006;1(3):297–315.

    Article  CAS  Google Scholar 

  10. Hefesha H, Loew S, Liu XL, May S, Fahr A. Transfer mechanism of temoporfin between liposomal membranes. J Control Release. 2011;150(3):279–86.

    Article  CAS  PubMed  Google Scholar 

  11. Decker C, Steiniger F, Fahr A. Transfer of a lipophilic drug (temoporfin) between small unilamellar liposomes and human plasma proteins: influence of membrane composition on vesicle integrity and release characteristics. J Liposome Res. 2013;23(2):154–65.

    Article  CAS  PubMed  Google Scholar 

  12. Choice E, Ayyobi AF, Pritchard PH, Madden TD. Separation of liposomes from plasma components using fast protein liquid chromatography. Anal Biochem. 1999;270(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  13. Chonn A, Semple SC, Cullis PR. Separation of large unilamellar liposomes from blood components by a spin column procedure—towards identifying plasma-proteins which mediate liposome clearance invivo. Biochim Biophys Acta. 1991;1070(1):215–22.

    Article  CAS  PubMed  Google Scholar 

  14. Wagner M, Holzschuh S, Traeger A, Fahr A, Schubert US. Asymmetric flow field-flow fractionation in the field of nanomedicine. Anal Chem. 2014;86(11):5201–10.

    Article  CAS  PubMed  Google Scholar 

  15. Lee JY, Choi D, Johan C, Moon MH. Improvement of lipoprotein separation with a guard channel prior to asymmetrical flow field-flow fractionation using fluorescence detection. J Chromatogr A. 2011;1218(27):4144–8.

    Article  CAS  PubMed  Google Scholar 

  16. Qureshi RN, Kok WT, Schoenmakers PJ. Fractionation of human serum lipoproteins and simultaneous enzymatic determination of cholesterol and triglycerides. Anal Chim Acta. 2009;654(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  17. Madorin M, van Hoogevest P, Hilfiker R, Langwost B, Kresbach GM, Ehrat M, et al. Analysis of drug plasma protein interactions by means of asymmetrical flow field flow fractionation. Pharmaceut Res. 1997;14(12):1706–12.

    Article  CAS  Google Scholar 

  18. Kuntsche J, Decker C, Fahr A. Analysis of liposomes using asymmetrical flow field-flow fractionation: Separation conditions and drug/lipid recovery. J Sep Sci. 2012;35(15):1993–2001.

    Article  CAS  PubMed  Google Scholar 

  19. Hupfeld S, Ausbacher D, Brandl M. Asymmetric flow field-flow fractionation of liposomes: 2. concentration detection and adsorptive loss phenomena. J Sep Sci. 2009;32(20):3555–61.

    Article  CAS  PubMed  Google Scholar 

  20. Hupfeld S, Ausbacher D, Brandl M. Asymmetric flow field-flow fractionation of liposomes: optimization of fractionation variables. J Sep Sci. 2009;32(9):1465–70.

    Article  CAS  PubMed  Google Scholar 

  21. Hinna A, Steiniger F, Hupfeld S, Brandl M, Kuntsche J. Asymmetrical flow field-flow fractionation with on-line detection for drug transfer studies: a feasibility study. Anal Bioanal Chem. 2014;406(30):7827–39.

    Article  CAS  PubMed  Google Scholar 

  22. Decker C, Fahr A, Kuntsche J, May S. Selective partitioning of cholesterol and a model drug into liposomes of varying size. Chem Phys Lipids. 2012;165(5):520–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kurosawa S, Tawara E, Kamo N, Kobatake Y. Oscillating frequency of piezoelectric quartz crystal in solutions. Anal Chim Acta. 1990;230(1):41–9.

    Article  CAS  Google Scholar 

  24. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. the Framingham Study. Am J Med. 1977;62(5):707–14.

    Article  CAS  PubMed  Google Scholar 

  25. Dugdale DC. Albumin - blood (serum): National Library of Medicine; 2013 [updated 2/13/2013; cited 2015 07/23]. Available from: http://www.nlm.nih.gov/medlineplus/ency/article/003480.htm.

  26. Clark RW, Ruggeri RB, Cunningham D, Bamberger MJ. Description of the torcetrapib series of cholesteryl ester transfer protein inhibitors, including mechanism of action. J Lipid Res. 2006;47(3):537–52.

    Article  CAS  PubMed  Google Scholar 

  27. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  28. Sandstrom MC, Johansson E, Edwards K. Structure of mixed micelles formed in PEG-lipid/lipid dispersions. Langmuir. 2007;23(8):4192–8.

    Article  PubMed  Google Scholar 

  29. Ha YC, Barter PJ. Differences in plasma cholesteryl ester transfer activity in 16 vertebrate species. Comp Biochem Phys B. 1982;71(2):265–9.

    Article  CAS  Google Scholar 

  30. Rambaldi DC, Zattoni A, Casolari S, Reschiglian P, Roessner D, Johann C. An analytical method for size and shape characterization of blood lipoproteins. Clin Chem. 2007;53(11):2026–9.

    Article  CAS  PubMed  Google Scholar 

  31. Rambaldi DC, Reschiglian P, Zattoni A, Johann C. Enzymatic determination of cholesterol and triglycerides in serum lipoprotein profiles by asymmetrical flow field-flow fractionation with on-line, dual detection. Anal Chim Acta. 2009;654(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  32. Mallol R, Rodriguez MA, Heras M, Vinaixa M, Plana N, Masana L, et al. Particle size measurement of lipoprotein fractions using diffusion-ordered NMR spectroscopy. Anal Bioanal Chem. 2012;402(7):2407–15.

    Article  CAS  PubMed  Google Scholar 

  33. Chicea D, Chicea R, Chicea LM. Hsa particle size characterization by Afm. Rom Rep Phys. 2013;65(1):178–85.

    CAS  Google Scholar 

  34. MichaelTitus AT, Whelpton R, Yaqub Z. Binding of temoporfin to the lipoprotein fractions of human serum. Brit J Clin Pharmacol. 1995;40(6):594–7.

    Article  CAS  Google Scholar 

  35. Reshetov V, Zorin V, Siupa A, D’Hallewin MA, Guillemin F, Bezdetnaya L. Interaction of liposomal formulations of meta-tetra(hydroxyphenyl)chlorin (Temoporfin) with serum proteins: protein binding and liposome destruction. Photochem Photobiol. 2012;88(5):1256–64.

    Article  CAS  PubMed  Google Scholar 

  36. Cox RA, Garcia-Palmieri MR. Cholesterol, triglycerides, and associated lipoproteins. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990.

    Google Scholar 

  37. Lederer A, Boye S. Asymmetrical flow field flow fractionation for investigating intermolecular interactions of multifunctional polymers. Lc Gc Eur. 2011;24(12):620-+.

    CAS  Google Scholar 

  38. Derksen JTP, Morselt HWM, Scherphof GL. Processing of different liposome markers after invitro uptake of immunoglobulin-coated liposomes by rat-liver macrophages. Biochim Biophys Acta. 1987;931(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  39. Fahr A, Seelig J. Liposomal formulations of cyclosporin A: a biophysical approach to pharmacokinetics and pharmacodynamics. Crit Rev Ther Drug Carrier Syst. 2001;18(2):141–72.

    CAS  PubMed  Google Scholar 

  40. Green SR, Beltz WF, Goldberg DI, Pittman RC. Cholesteryl oleyl and linoleyl ethers do not trace their ester counterparts in animals with plasma cholesteryl ester transfer activity. J Lipid Res. 1989;30(9):1405–10.

    CAS  PubMed  Google Scholar 

  41. Fahr A, Holz M, Fricker G. Liposomal formulations of cyclosporin A: influence of lipid type and dose on pharmacokinetics. Pharm Res. 1995;12(8):1189–98.

    Article  CAS  PubMed  Google Scholar 

  42. Barter PJ, Brewer Jr HB, Chapman MJ, Hennekens CH, Rader DJ, Tall AR. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol. 2003;23(2):160–7.

    Article  CAS  PubMed  Google Scholar 

  43. Scherphof G, Vanleeuwen B, Wilschut J, Damen J. Exchange of phosphatidylcholine between small unilamellar liposomes and human-plasma high-density lipoprotein involves exclusively the phospholipid in the outer monolayer of the liposomal membrane. Biochim Biophys Acta. 1983;732(3):595–9.

    Article  CAS  PubMed  Google Scholar 

  44. Scherphof G, Roerdink F, Waite M, Parks J. Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim Biophys Acta. 1978;542(2):296–307.

    Article  CAS  PubMed  Google Scholar 

  45. Wirtz KW. Phospholipid transfer proteins. Annu Rev Biochem. 1991;60:73–99.

    Article  CAS  PubMed  Google Scholar 

  46. Damen J, Regts J, Scherphof G. Transfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high density lipoproteins. dependence on cholesterol content and phospholipid composition. Biochim Biophys Acta. 1981;665(3):538–45.

    Article  CAS  PubMed  Google Scholar 

  47. Zuidam NJ, Crommelin DJ. Chemical hydrolysis of phospholipids. J Pharm Sci. 1995;84(9):1113–9.

    Article  CAS  PubMed  Google Scholar 

  48. Shirai K, Fitzharris TJ, Shinomiya M, Muntz HG, Harmony JA, Jackson RL, et al. Lipoprotein lipase-catalyzed hydrolysis of phosphatidylcholine of guinea pig very low density lipoproteins and discoidal complexes of phospholipid and apolipoprotein: effect of apolipoprotein C-II on the catalytic mechanism. J Lipid Res. 1983;24(6):721–30.

    CAS  PubMed  Google Scholar 

  49. Zuidam NJ, Gouw HKME, Barenholz Y, Crommelin DJA. Physical (in) stability of liposomes upon chemical hydrolysis—the role of lysophospholipids and fatty-acids. Bba-Biomembranes. 1995;1240(1):101–10.

    Article  PubMed  Google Scholar 

  50. Hamilton JA, Cistola DP. Transfer of oleic acid between albumin and phospholipid vesicles. Proc Natl Acad Sci U S A. 1986;83(1):82–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murata N, Sato K, Kon J, Tomura H, Yanagita M, Kuwabara A, et al. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J. 2000;352(Pt 3):809–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blume G, Cevc G. Molecular mechanism of the lipid vesicle longevity invivo. Biochim Biophys Acta. 1993;1146(2):157–68.

    Article  CAS  PubMed  Google Scholar 

  53. Senge MO, Brandt JC. Temoporfin (Foscan (R), 5,10,15,20-Tetra(m-hydroxyphenyl)chlorin)-a second-generation photosensitizer. Photochem Photobiol. 2011;87(6):1240–96.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors thank biolitec biomedical technology GmbH (Jena, Germany) for kindly providing mTHPC and 14C-mTHPC, Lipoid GmbH (Ludwigshafen, Germany) for donation of EPC and EPG as well as Phospholipid Research Center (Heidelberg, Germany) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Decker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzschuh, S., Kaeß, K., Fahr, A. et al. Quantitative In Vitro Assessment of Liposome Stability and Drug Transfer Employing Asymmetrical Flow Field-Flow Fractionation (AF4). Pharm Res 33, 842–855 (2016). https://doi.org/10.1007/s11095-015-1831-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1831-y

KEY WORDS

Navigation