Skip to main content

Advertisement

Log in

Suppression of Remodeling Behaviors with Arachidonic Acid Modification for Enhanced in vivo Antiatherogenic Efficacies of Lovastatin-loaded Discoidal Recombinant High Density Lipoprotein

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

A series of in vitro evaluation in our previous studies had proved that arachidonic acid (AA) modification could suppress the remodeling behaviors of lovastatin-loaded discoidal reconstituted high density lipoprotein (LT-d-rHDL) by restraining the reactivity with lecithin cholesterol acyltransferase (LCAT) for reducing undesired drug leakage. This study focuses on the investigation of AA-modified LT-d-rHDL (AA-LT-d-rHDL) in atherosclerotic New Zealand White (NZW) rabbit models to explore whether AA modification could enhance drug targeting delivery and improve antiatherogenic efficacies in vivo.

Methods

After pharmacokinetics of AA-LT-d-rHDL modified with different AA amount were investigated in atherosclerotic NZW rabbits, atherosclerotic lesions targeting property was assessed by ex vivo imaging of aortic tree and drug distribution. Furthermore, their antiatherogenic efficacies were elaborately evaluated and compared by typical biochemical indices.

Results

With AA modification amount augmenting, circulation time of AA-LT-d-rHDL was prolonged, and drug accumulation in the target locus was increased, eventually the significant appreciation in antiatherogenic efficacies were further supported by lower level of bad cholesterol, decreased atherosclerotic lesions areas and mean intima-media thickness (MIT), markedly attenuated matrix metalloproteinase-9 (MMP-9) protein expression and macrophage infiltration.

Conclusion

This proof-of-concept study demonstrated that AA-LT-d-rHDL could enhance drug accumulation in atherosclerotic lesion and impede atherosclerosis progression more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

AA-LT-d-rHDL:

AA-modified rHDL loaded with lovastatin

apoA-I:

Apolipoproteina-I

DL:

Drug loading efficiency

d-rHDL:

Discoidal recombinant HDL

EE:

Entrapment efficiency

HDL:

High density lipoprotein

HDL-C:

High density lipoprotein cholesterol

LCAT:

Lecithin cholesterol acyltransferase

LDL-C:

Low density lipoprotein cholesterol

LT-d-rHDL:

Lovastatin-loaded rHD

MIT:

Intima-media thickness

MMP-9:

Matrix metalloproteinase-9

RCT:

Reverse cholesterol transport

rHDL:

Recombinant HDL

s-rHDL:

Spherical recombinant HDL

TC:

Total cholesterol

TG:

Triglyceride

References

  1. Ohtani T, Ueda Y, Mizote I, Oyabu J, Okada K, Hirayama A, et al. Number of yellow plaques detected in a coronary artery is associated with future risk of acute coronary syndrome: detection of vulnerable patients by angioscopy. J Am Coll Cardiol. 2006;47(11):2194–200.

    Article  PubMed  Google Scholar 

  2. Mihos CG, Pineda AM, Santana O. Cardiovascular effects of statins, beyond lipid-lowering properties. Pharmacol Res. 2014;88:12–9.

    Article  CAS  PubMed  Google Scholar 

  3. Romana B, Batger MA, Prestidge C, Colombo G, Sonvico F. Expanding the therapeutic potential of statins by means of nanotechnology enabled drug delivery systems. Curr Top Med Chem. 2014;14(9):1182–93.

    Article  CAS  PubMed  Google Scholar 

  4. Tsompanidi EM, Brinkmeier MS, Fotiadou EH, Giakoumi SM, Kypreos KE. HDL biogenesis and functions: role of HDL quality and quantity in atherosclerosis. Atherosclerosis. 2010;208(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  5. Patel S, Drew BG, Nakhla S, Duffy SJ, Murphy AJ, Barter PJ, et al. Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes. J Am Coll Cardiol. 2009;53(11):962–71.

    Article  CAS  PubMed  Google Scholar 

  6. Nicholls SJ, Dusting GJ, Cutri B, Bao S, Drummond GR, Rye K-A, et al. Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation. 2005;111(12):1543–50.

    Article  CAS  PubMed  Google Scholar 

  7. Mooberry LK, Nair M, Paranjape S, McConathy WJ, Lacko AG. Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier. J Drug Target. 2010;18(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ding Y, Wang W, Feng M, Wang Y, Zhou J, Ding X, et al. A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Biomaterials. 2012;33(34):8893–905.

    Article  CAS  PubMed  Google Scholar 

  9. McMahon KM, Thaxton CS. High-density lipoproteins for the systemic delivery of short interfering RNA. Expert Opin Drug Del. 2014;11(2):231–47.

    Article  CAS  Google Scholar 

  10. Zhang W, Xiao Y, Liu J, Wu Z, Gu X, Xu Y, et al. Structure and remodeling behavior of drug-loaded high density lipoproteins and their atherosclerotic plaque targeting mechanism in foam cell model. Int J Pharm. 2011;419(1):314–21.

    Article  CAS  PubMed  Google Scholar 

  11. Liu L, He H, Zhang M, Zhang S, Zhang W, Liu J. Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions. Biomaterials. 2014;35(27):8002–14.

    Article  CAS  PubMed  Google Scholar 

  12. Damiano MG, Mutharasan RK, Tripathy S, McMahon KM, Thaxton CS. Templated high density lipoprotein nanoparticles as potential therapies and for molecular delivery. Adv Drug Deliver Rev. 2013;65(5):649–62.

    Article  CAS  Google Scholar 

  13. Zhang W, He H, Liu J, Wang J, Zhang S, Zhang S, et al. Pharmacokinetics and atherosclerotic lesions targeting effects of tanshinone IIA discoidal and spherical biomimetic high density lipoproteins. Biomaterials. 2013;34(1):306–19.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W, Li J, Liu J, Wu Z, Xu Y, Wang J. Tanshinone IIA-loaded reconstituted high density lipoproteins: atherosclerotic plaque targeting mechanism in a foam cell model and pharmacokinetics in rabbits. Pharmazie. 2012;67(4):324–30.

    CAS  PubMed  Google Scholar 

  15. Zhang W, Gu X, Bai H, Yang R, Dong C, Liu J. Nanostructured lipid carriers constituted from high-density lipoprotein components for delivery of a lipophilic cardiovascular drug. Int J Pharm. 2010;391(1):313–21.

    Article  CAS  PubMed  Google Scholar 

  16. Jia J, Xiao Y, Liu J, Zhang W, He H, Chen L, et al. Preparation, characterizations, and in vitro metabolic processes of paclitaxel‐loaded discoidal recombinant high-density lipoproteins. J Pharm Sci. 2012;101(8):2900–8.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Jia J, Liu J, He H, Zhang W, Li Z. Tumor targeting effects of a novel modified paclitaxel-loaded discoidal mimic high density lipoproteins. Drug Deliv. 2013;20(8):356–63.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang M, Jia J, Liu J, He H, Liu L. A novel modified paclitaxel-loaded discoidal recombinant high-density lipoproteins: preparation, characterizations and in vivo evaluation. AJPS. 2013;8(1):11–8.

    CAS  Google Scholar 

  19. He H, Liu L, Bai H, Wang J, Zhang Y, Zhang W, et al. Arachidonic acid-modified lovastatin discoidal reconstituted high density lipoprotein markedly decreases the drug leakage during the remodeling behaviors induced by lecithin cholesterol acyltransferase. Pharm Res. 2014;31(7):1689–709.

    Article  CAS  PubMed  Google Scholar 

  20. Sparks DL, Chatterjee C, Young E, Renwick J, Pandey NR. Lipoprotein charge and vascular lipid metabolism. Chem Phys Lipids. 2008;154(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  21. Huggins KW, Curtiss LK, Gebre AK, Parks JS. Effect of long chain polyunsaturated fatty acids in the sn-2 position of phosphatidylcholine on the interaction with recombinant high density lipoprotein apolipoprotein AI. J Lipid Res. 1998;39(12):2423–31.

    CAS  PubMed  Google Scholar 

  22. Parks JS, Huggins KW, Gebre AK, Burleson ER. Phosphatidylcholine fluidity and structure affect lecithin: cholesterol acyltransferase activity. J Lipid Res. 2000;41(4):546–53.

    CAS  PubMed  Google Scholar 

  23. Chen C-C, Tsai T-H, Huang Z-R, Fang J-Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm. 2010;74(3):474–82.

    Article  CAS  PubMed  Google Scholar 

  24. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis site-selective responses to atherosclerotic modulators. Arterioscl Throm Vas. 2004;24(1):12–22.

    Article  CAS  Google Scholar 

  25. Frias JC, Williams KJ, Fisher EA, Fayad ZA. Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc. 2004;126(50):16316–7.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang C, Qu G, Sun Y, Wu X, Yao Z, Guo Q, et al. Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel. Biomaterials. 2008;29(9):1233–41.

    Article  CAS  PubMed  Google Scholar 

  27. Shi Z-S, Loh Y, Duckwiler GR, Jahan R, Viñuela F. Balloon-assisted transarterial embolization of intracranial dural arteriovenous fistulas: Clinical article. J Neurosurg. 2009;110(5):921–8.

    Article  PubMed  Google Scholar 

  28. Hernández-Presa MA, Bustos C, Ortego M, Tuñón J, Ortega L, Egido J. ACE inhibitor quinapril reduces the arterial expression of NF-κB-dependent proinflammatory factors but not of collagen I in a rabbit model of atherosclerosis. Am J Pathol. 1998;153(6):1825–37.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Pols TW, Bonta PI, Pires NM, Otermin I, Vos M, de Vries MR, et al. 6-mercaptopurine inhibits atherosclerosis in apolipoprotein e* 3-leiden transgenic mice through atheroprotective actions on monocytes and macrophages. Arterioscl Throm Vas. 2010;30(8):1591–7.

    Article  CAS  Google Scholar 

  30. Chen WQ, Zhang L, Liu YF, Chen L, Ji XP, Zhang M, et al. Prediction of atherosclerotic plaque ruptures with high-frequency ultrasound imaging and serum inflammatory markers. Am J Physiol-Heart C. 2007;293(5):H2836–H44.

    Article  CAS  Google Scholar 

  31. Daley S, Herderick E, Cornhill J, Rogers K. Cholesterol-fed and casein-fed rabbit models of atherosclerosis. Part 1: Differing lesion area and volume despite equal plasma cholesterol levels. Arterioscl Throm Vas. 1994;14(1):95–104.

    Article  CAS  Google Scholar 

  32. Anderson JL, Muhlestein JB, Carlquist J, Allen A, Trehan S, Nielson C, et al. Randomized secondary prevention trial of azithromycin in patients with coronary artery disease and Serological evidence for chlamydia pneumoniae infection the azithromycin in coronary artery disease: elimination of myocardial infection with chlamydia (ACADEMIC) study. Circulation. 1999;99(12):1540–7.

    Article  CAS  PubMed  Google Scholar 

  33. Dong B, Zhang C, Feng JB, Zhao YX, Li SY, Yang YP, et al. Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis. Arterioscl Throm Vas. 2008;28(7):1270–6.

    Article  CAS  Google Scholar 

  34. Cipollone F, Prontera C, Pini B, Marini M, Fazia M, De Cesare D, et al. Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E2-dependent plaque instability. Circulation. 2001;104(8):921–7.

    Article  CAS  PubMed  Google Scholar 

  35. Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, Kang B-Y, et al. Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circ-Cardiovasc Imag. 2010;3(4):464–72.

    Article  CAS  Google Scholar 

  36. Greenstein SM, Sun S, Calderon TM, Kim DY, Schreiber TC, Schechner RS, et al. Mycophenolate mofetil treatment reduces atherosclerosis in the cholesterol-fed rabbit. J Surg Res. 2000;91(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  37. Hernández-Presa MA, Ortego M, Tuñón J, Martín-Ventura JL, Mas S, Blanco-Colio LM, et al. Simvastatin reduces NF-κB activity in peripheral mononuclear and in plaque cells of rabbit atheroma more markedly than lipid lowering diet. Cardiovasc Res. 2003;57(1):168–77.

    Article  PubMed  Google Scholar 

  38. Yu K-N, Minai-Tehrani A, Chang S-H, Hwang S-K, Hong S-H, Kim J-E, et al. Aerosol delivery of small hairpin osteopontin blocks pulmonary metastasis of breast cancer in mice. PLoS One. 2010;5(12):e15623.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Hrboticky N, Draude G, Hapfelmeier G, Lorenz R, Weber P. Lovastatin decreases the receptor-mediated degradation of acetylated and oxidized LDLs in human blood monocytes during the early stage of differentiation into macrophages. Arterioscl Throm Vas. 1999;19(5):1267–75.

    Article  CAS  Google Scholar 

  40. Lin R, Liu J, Peng N, Yang G, Gan W, Wang W. Lovastatin reduces nuclear factor KAPPA. B activation induced by C-reactive protein in human vascular endothelial cells. Biol Pharm Bull. 2005;28(9):1630–4.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was financially supported by National Natural Science Foundation of China (No. 81273466), Specialized Research Fund for the Doctoral Program of Higher Education (20120096120005) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. We also acknowledged kind help in animal study from Institute of Veterinary Medicine (Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu) and kind support in evaluation of antiatherogenic efficacies from KeyGEN BioTECH (Changhong Road No. 439, Nanjing, Jiangsu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Liu or Wenli Zhang.

Additional information

Hongliang He and Mengyuan Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Zhang, M., Liu, L. et al. Suppression of Remodeling Behaviors with Arachidonic Acid Modification for Enhanced in vivo Antiatherogenic Efficacies of Lovastatin-loaded Discoidal Recombinant High Density Lipoprotein. Pharm Res 32, 3415–3431 (2015). https://doi.org/10.1007/s11095-015-1719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1719-x

KEY WORDS

Navigation