Skip to main content
Log in

Quantitative Assessment of Intestinal First-pass Metabolism of Oral Drugs Using Portal-vein Cannulated Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the impact of intestinal first-pass metabolism (Fg) by cytochrome P4503A (CYP3A) and uridine 5’-diphosphate-glucuronosyltransferases (UGT) on in vivo oral absorption of their substrate drugs.

Methods

CYP3A and UGT substrates were orally administered to portal-vein cannulated (PV) rats to evaluate their intestinal availability (Fa · Fg). In the case of CYP3A substrates, vehicle or 1-aminobenzotriazole (ABT), a potent inhibitor of CYP enzymes, was pretreated to assess Fg separately from Fa (Enzyme-inhibition method). On the other hand, since potent inhibitors of UGT have not been identified, Fg of UGT substrate was calculated from total amount of metabolites generated in enterocytes (Metabolite-distribution method).

Results

After oral administration of CYP3A substrates in ABT-pretreated rats, the portal and systemic plasma concentrations of the metabolite were nearly the same, indicating almost complete inhibition of intestinal CYP3A-mediated metabolism. Using Enzyme-inhibition method, Fg of midazolam (1 mg/kg) was calculated as 0.71. Additionally, total amount of raloxifene-6-glucuronide generated in enterocytes after oral administration of raloxifene was estimated using Metabolite-distribution method and Fg of raloxifene (0.98 μmol/kg) was calculated as 0.21.

Conclusions

PV rats enabled in vivo quantitative assessment of intestinal first-pass metabolism by CYP3A and UGT. This method is useful for clarifying the cause of low bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABT:

1-Aminobenzotriazole

ANT:

Antipyrine

BUS:

Buspirone

CYP:

Cytochrome P450

D-FEL:

Dehydrofelodipine

FEX:

Fexofenadine

FEL:

Felodipine

MDZ:

Midazolam

6-OH-BUS:

6-Hydroxybuspirone

1-OH-MDZ:

1-Hydroxy-midazolam

4-OH-MDZ:

4-Hydroxy-midazolam

P-gp:

P-glycoprotein

PV rats:

Portal vein-cannulated rats

RLX:

Raloxifene

R4’G:

Raloxifene-4’-glucuronide

R6G:

Raloxifene-6-glucuronide

UGT:

Uridine 5’-diphosphate –glucuronosyltransferase

References

  1. Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005;352:2211–21.

    Article  CAS  PubMed  Google Scholar 

  2. Watkins PB, Wrighton SA, Schuetz EG, Molowa DT, Guzelian PS. Identification of glucocorticoid-inducible cytochromes P-450 in the intestinal mucosa of rats and man. J Clin Invest. 1987;80:1029–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos. 2006;34:880–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nishimuta H, Sato K, Yabuki M, Komuro S. Prediction of the intestinal first-pass metabolism of CYP3A and UGT substrates in humans from in vitro data. Drug Metab Pharmacokinet. 2011;26:592–601.

    Article  CAS  PubMed  Google Scholar 

  5. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32:1201–8.

    Article  CAS  PubMed  Google Scholar 

  6. Mizuma T. Intestinal glucuronidation metabolism may have a greater impact on oral bioavailability than hepatic glucuronidation metabolism in humans: a study with raloxifene, substrate for UGT1A1, 1A8, 1A9, and 1A10. Int J Pharm. 2009;378:140–1.

    Article  CAS  PubMed  Google Scholar 

  7. Ogasawara A, Kume T, Kazama E. Effect of oral ketoconazole on intestinal first-pass effect of midazolam and fexofenadine in cynomolgus monkeys. Drug Metab Dispos. 2007;35:410–8.

    Article  CAS  PubMed  Google Scholar 

  8. Nishimuta H, Sato K, Mizuki Y, Yabuki M, Komuro S. Prediction of the intestinal first-pass metabolism of CYP3A substrates in humans using cynomolgus monkeys. Drug Metab Dispos. 2010;38:1967–75.

    Article  CAS  PubMed  Google Scholar 

  9. Matsuda Y, Konno Y, Hashimoto T, Nagai M, Taguchi T, Satsukawa M, et al. In vivo assessment of the impact of efflux transporter on oral drug absorption using portal vein-cannulated rats. Drug Metab Dispos. 2013;41:1514–21.

    Article  CAS  PubMed  Google Scholar 

  10. Strelevitz TJ, Foti RS, Fisher MB. In vivo use of the P450 inactivator 1-aminobenzotriazole in the rat: varied dosing route to elucidate gut and liver contributions to first-pass and systemic clearance. J Pharm Sci. 2006;95:1334–41.

    Article  CAS  PubMed  Google Scholar 

  11. Sun Q, Harper TW, Dierks EA, Zhang L, Chang S, Rodrigues AD, et al. 1-Aminobenzotriazole, a known cytochrome P450 inhibitor, is a substrate and inhibitor of N-acetyltransferase. Drug Metab Dispos. 2011;39:1674–9.

    Article  CAS  PubMed  Google Scholar 

  12. Mico BA, Federowicz DA, Ripple MG, Kerns W. In vivo inhibition of oxidative drug metabolism by, and acute toxicity of, 1-aminobenzotriazole (ABT). a tool for biochemical toxicology. Biochem Pharmacol. 1988;37:2515–9.

    Article  CAS  PubMed  Google Scholar 

  13. Meschter CL, Mico BA, Mortillo M, Feldman D, Garland WA, Riley JA, et al. A 13-week toxicologic and pathologic evaluation of prolonged cytochromes P450 inhibition by 1-aminobenzotriazole in male rats. Fundam Appl Toxicol. 1994;22:369–81.

    Article  CAS  PubMed  Google Scholar 

  14. Jeong EJ, Liu Y, Lin H, Hu M. Species and disposition model-dependent metabolism of raloxifene in gut and liver: role of UGT1A10. Drug Metab Dispos. 2005;33:785–94.

    Article  CAS  PubMed  Google Scholar 

  15. Jeong EJ, Lin H, Hu M. Disposition mechanisms of raloxifene in the human intestinal Caco-2 model. J Pharmacol Exp Ther. 2004;310:376–85.

    Article  CAS  PubMed  Google Scholar 

  16. Kosaka K, Sakai N, Endo Y, Fukuhara Y, Tsuda-Tsukimoto M, Ohtsuka T, et al. Impact of intestinal glucuronidation on the pharmacokinetics of raloxifene. Drug Metab Dispos. 2011;39:1495–502.

    Article  CAS  PubMed  Google Scholar 

  17. Matsuda Y, Konno Y, Satsukawa M, Kobayashi T, Takimoto Y, Morisaki K, et al. Assessment of intestinal availability of various drugs in the oral absorption process using portal vein-cannulated rats. Drug Metab Dispos. 2012;40:2231–8.

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi M, Washio T, Suzuki N, Igeta K, Yamashita S. Investigation of the intestinal permeability and first-pass metabolism of drugs in cynomolgus monkeys using single-pass intestinal perfusion. Biol Pharm Bull. 2010;33:111–6.

    Article  CAS  PubMed  Google Scholar 

  19. Nozawa T, Imai T. Prediction of human intestinal absorption of the prodrug temocapril by in situ single-pass perfusion using rat intestine with modified hydrolase activity. Drug Metab Dispos. 2011;39:1263–9.

    Article  CAS  PubMed  Google Scholar 

  20. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13:519–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hoffman DJ, Seifert T, Borre A, Nellans HN. Method to estimate the rate and extent of intestinal absorption in conscious rats using an absorption probe and portal blood sampling. Pharm Res. 1995;12:889–94.

    Article  CAS  PubMed  Google Scholar 

  22. Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27:866–71.

    CAS  PubMed  Google Scholar 

  23. Zhu M, Zhao W, Jimenez H, Zhang D, Yeola S, Dai R, et al. Cytochrome P450 3A-mediated metabolism of buspirone in human liver microsomes. Drug Metab Dispos. 2005;33:500–7.

    Article  CAS  PubMed  Google Scholar 

  24. Furukawa T, Nakamori F, Tetsuka K, Naritomi Y, Moriguchi H, Yamano K, et al. Quantitative prediction of intestinal glucuronidation of drugs in rats using in vitro metabolic clearance data. Drug Metab Pharmacokinet. 2012;27:171–80.

    Article  CAS  PubMed  Google Scholar 

  25. Yamashita S, Yoshida M, Taki Y, Sakane T, Nadai T. Kinetic analysis of the drug permeation process across the intestinal epithelium. Pharm Res. 1994;11:1646–51.

    Article  CAS  PubMed  Google Scholar 

  26. Paine MF, Khalighi M, Fisher JM, Shen DD, Kunze KL, Marsh CL, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther. 1997;283:1552–62.

    CAS  PubMed  Google Scholar 

  27. Paine MF, Shen DD, Kunze KL, Perkins JD, Marsh CL, McVicar JP, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther. 1996;60:14–24.

    Article  CAS  PubMed  Google Scholar 

  28. Gertz M, Davis JD, Harrison A, Houston JB, Galetin A. Grapefruit juice-drug interaction studies as a method to assess the extent of intestinal availability: utility and limitations. Curr Drug Metab. 2008;9:785–95.

    Article  CAS  PubMed  Google Scholar 

  29. Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. Prediction of intestinal first-pass drug metabolism. Curr Drug Metab. 2007;8:676–84.

    Article  CAS  PubMed  Google Scholar 

  30. Kadono K, Akabane T, Tabata K, Gato K, Terashita S, Teramura T. Quantitative prediction of intestinal metabolism in humans from a simplified intestinal availability model and empirical scaling factor. Drug Metab Dispos. 2010;38:1230–7.

    Article  CAS  PubMed  Google Scholar 

  31. Higashikawa F, Murakami T, Kaneda T, Kato A, Takano M. Dose-dependent intestinal and hepatic first-pass metabolism of midazolam, a cytochrome P450 3A substrate with differently modulated enzyme activity in rats. J Pharm Pharmacol. 1999;51:67–72.

    Article  CAS  PubMed  Google Scholar 

  32. Hirunpanich V, Murakoso K, Sato H. Inhibitory effect of docosahexaenoic acid (DHA) on the intestinal metabolism of midazolam: in vitro and in vivo studies in rats. Int J Pharm. 2008;351:133–43.

    CAS  PubMed  Google Scholar 

  33. Petri N, Tannergren C, Rungstad D, Lennernäs H. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm Res. 2004;21:1398–404.

    Article  CAS  PubMed  Google Scholar 

  34. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38:1147–58.

    Article  CAS  PubMed  Google Scholar 

  35. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 1991;175:880–5.

    Article  CAS  PubMed  Google Scholar 

  36. Ohura K, Soejima T, Nogata R, Adachi Y, Ninomiya S, Imai T. Effect of intestinal first-pass hydrolysis on the oral bioavailability of an ester prodrug of fexofenadine. J Pharm Sci. 2012;101:3264–74.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

We thank Kunihiko Morisaki (Charles River Laboratories Japan), Dr. Jiro Kuze (Taiho Pharmaceutical Co. Ltd.), and Dr. Toshiyuki Kume (Mitsubishi Tanabe Pharma Corporation) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Matsuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, Y., Konno, Y., Hashimoto, T. et al. Quantitative Assessment of Intestinal First-pass Metabolism of Oral Drugs Using Portal-vein Cannulated Rats. Pharm Res 32, 604–616 (2015). https://doi.org/10.1007/s11095-014-1489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1489-x

KEY WORDS

Navigation