Skip to main content

Advertisement

Log in

Nanomagnetic Activation as a Way to Control the Efficacy of Nucleic Acid Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

ABSTRACT

Purpose

To explore the potential of magnetofection in delivering pDNA to primary mouse embryonic fibroblasts (PMEFs) and porcine fetal fibroblasts (PFFs) and investigate an effect of magnetic cell labeling on transfection efficacy.

Methods

The formulation and a dose of the magnetic vector were optimized. The efficacy of the procedure was quantified by vector internalization, transgene expression and cell iron loading upon specific labeling with Ab-conjugated magnetic beads or non-specific labeling with MNPs.

Results

Up to sixty percent of PMEF and PFF cells were transfected at low pDNA doses of 4–16 pg pDNA/cell. Specific labeling of the PMEFs with MNPs, resulted in a 3- and 2-fold increase in pDNA internalization upon magnetofection and lipofection, respectively, that yielded a 2–4-fold increase in percent of transgene-expressing cells. Non-specific cell labeling had no effect on the efficacy of the reporter expression, despite the acquisition of similar magnetic moments per cell. In PFFs, specific magnetic labeling of the cell surface receptors inhibited internalization and transfection efficacy.

Conclusions

Magnetic labeling of cell-surface receptors combined with the application of an inhomogenous magnetic field (nanomagnetic activation) can affect the receptor-mediated internalization of delivery vectors and be used to control nucleic acid delivery to cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CPM:

Counts per minutes

DMEM:

Dulbecco’s modified Eagle’s medium

EDTA:

Ethylenediaminetetraacetic acid

FBS:

Fetal bovine serum

iPSCs:

Induced pluripotent stem cells

MNPs:

Magnetic nanoparticles

PBS:

Dulbecco’s phosphate buffered saline

PCS:

Photon correlation spectroscopy

PE:

Phycoerythrin

PEI:

Polyethylenimine

PFF:

Porcine fetal fibroblasts

PMEF:

Primary mouse embryonic fibroblasts

TEM:

Transmission electron microscopy

TEOS:

Tetraethyl orthosilicate

THPMP:

3-(trihydroxysilyl) propylmethylphosphonate

REFERENCES

  1. Takahashiand K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  Google Scholar 

  2. Fujimura T, Takahagi Y, Shigehisa T, Nagashima H, Miyagawa S, Shirakura R, et al. Production of alpha 1,3-galactosyltransferase gene-deficient pigs by somatic cell nuclear transfer: a novel selection method for gal alpha 1,3-Gal antigen-deficient cells. Mol Reprod Dev. 2008;75:1372–8.

    Article  CAS  PubMed  Google Scholar 

  3. Greschand O, Altrogge L. Transfection of difficult-to-transfect primary mammalian cells. Methods Mol Biol. 2011;801:65–74.

    Article  Google Scholar 

  4. Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, et al. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest. 2008;118:1571–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wang W, Li W, Ma N, Steinhoff G. Non-viral gene delivery methods. Curr Pharm Biotechnol. 2013;14:46–60.

    CAS  PubMed  Google Scholar 

  6. Nakayama A, Sato M, Shinohara M, Matsubara S, Yokomine T, Akasaka E, et al. Efficient transfection of primarily cultured porcine embryonic fibroblasts using the amaxa nucleofection system. Cloning Stem Cells. 2007;9:523–34.

    Article  CAS  PubMed  Google Scholar 

  7. Ross JW, Whyte JJ, Zhao J, Samuel M, Wells KD, Prather RS. Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts. Transgenic Res. 2010;19:611–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Fourikiand A, Dobson J. Nanomagnetic gene transfection for non-viral gene delivery in NIH 3T3 mouse embryonic fibroblasts. Materials. 2013;6:255–64.

    Article  Google Scholar 

  9. Adler AF, Grigsby CL, Kulangara K, Wang H, Yasuda R, Leong KW. Nonviral direct conversion of primary mouse embryonic fibroblasts to neuronal cells. Mol Ther Nucleic Acids. 2012;1:e32.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv Drug Deliv Rev. 2011;63:1300–31.

    Article  CAS  PubMed  Google Scholar 

  11. Cui J, Cui H, Wang Y, Sun C, Li K, Ren H, et al. Application of PEI-modified magnetic nanoparticles as gene transfer vector for the genetic modification of animals. Adv Mater Sci Eng. 2012;2012:1–6.

    Article  Google Scholar 

  12. Lee CH, Kim JH, Lee HJ, Jeon K, Lim H, Choi H, et al. The generation of iPS cells using non-viral magnetic nanoparticle based transfection. Biomaterials. 2011;32:6683–91.

    Article  CAS  PubMed  Google Scholar 

  13. Mykhaylyk O, Steingotter A, Perea H, Aigner J, Botnar R, Plank C. Nucleic acid delivery to magnetically-labeled cells in a 2D array and at the luminal surface of cell culture tube and their detection by MRI. J Biomed Nanotechnol. 2009;5:692–706.

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez-Antequera Y, Mykhaylyk O, van Til NP, Cengizeroglu A, de Jong JH, Huston MW, et al. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells. Blood. 2011;117:e171–181.

    Article  CAS  PubMed  Google Scholar 

  15. Chorny M, Fishbein I, Tengood JE, Adamo RF, Alferiev IS, Levy RJ. Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors. FASEB J. 2013;27:2198–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Mykhaylyk O, Antequera YS, Vlaskou D, Plank C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc. 2007;2:2391–411.

    Article  CAS  PubMed  Google Scholar 

  17. Mykhaylyk O, Sobisch T, Almstatter I, Sanchez-Antequera Y, Brandt S, Anton M, et al. Silica-iron oxide magnetic nanoparticles modified for gene delivery: a search for optimum and quantitative criteria. Pharm Res. 2012;29:1344–65.

    Article  CAS  PubMed  Google Scholar 

  18. Sanchez-Antequera Y, Mykhaylyk O, Thalhammer S, Plank C. Gene delivery to jurkat T cells using non-viral vectors associated with magnetic nanoparticles. Int J Biomed Nanosci Nanotechnol. 2010;1:202–29.

    Article  CAS  Google Scholar 

  19. Torranceand JD, Bothwell TH. Tissue iron stores. In: JD C, editor. Methods in hematology: iron. New York: Churchill Livingstone; 1981. p. 90–115.

    Google Scholar 

  20. Mykhaylyk O, Zelphati O, Rosenecker J, Plank C. siRNA delivery by magnetofection. Curr Opin Mol Ther. 2008;10:493–505.

    CAS  PubMed  Google Scholar 

  21. Wilhelm C, Gazeau F, Bacri JC. Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J Biophys Lett. 2002;31:118–25.

    Article  CAS  Google Scholar 

  22. Tresilwised N, Pithayanukul P, Holm PS, Schillinger U, Plank C, Mykhaylyk O. Effects of nanoparticle coatings on the activity of oncolytic adenovirus-magnetic nanoparticle complexes. Biomaterials. 2012;33:256–69.

    Article  CAS  PubMed  Google Scholar 

  23. Dickens S, Van den Berge S, Hendrickx B, Verdonck K, Luttun A, Vranckx JJ. Nonviral transfection strategies for keratinocytes, fibroblasts, and endothelial progenitor cells for ex vivo gene transfer to skin wounds. Tissue Eng Part C Methods. 2010;16:1601–8.

    Article  CAS  PubMed  Google Scholar 

  24. Maurisse R, De Semir D, Emamekhoo H, Bedayat B, Abdolmohammadi A, Parsi H, et al. Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol. 2010;10:9.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Richter A, Kurome M, Kessler B, Zakhartchenko V, Klymiuk N, Nagashima H, et al. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig. BMC Biotechnol. 2012;12:84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Arbaband AS, Frank JA. Cellular MRI and its role in stem cell therapy. Regen Med. 2008;3:199–215.

    Article  Google Scholar 

  27. Polyak B, Fishbein I, Chorny M, Alferiev I, Williams D, Yellen B, et al. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci U S A. 2008;105:698–703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kempeand H, Kempe M. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials. 2010;31:9499–510.

    Article  Google Scholar 

  29. Santiniand F, Keen JH. Endocytosis of activated receptors and clathrin-coated pit formation: deciphering the chicken or egg relationship. J Cell Biol. 1996;132:1025–36.

    Article  Google Scholar 

  30. Santini F, Marks MS, Keen JH. Endocytic clathrin-coated pit formation is independent of receptor internalization signal levels. Mol Biol Cell. 1998;9:1177–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bildirici L, Smith P, Tzavelas C, Horefti E, Rickwood D. Biotechniques: transfection of cells by immunoporation. Nature. 2000;405:298.

    CAS  PubMed  Google Scholar 

  32. Tzavelas C, Bildirici L, Rickwood D. Production of stably transfected cell lines using immunoporation. Biotechniques. 2004;37:276−+.

    PubMed  Google Scholar 

  33. Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, et al. Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol. 2008;3:36–40.

    Article  CAS  PubMed  Google Scholar 

  34. Lee JH, Kim ES, Cho MH, Son M, Yeon SI, Shin JS, et al. Artificial control of cell signaling and growth by magnetic nanoparticles. Angew Chem-Int Ed. 2010;49:5698–702.

    Article  CAS  Google Scholar 

  35. Hughes S, McBain S, Dobson J, El Haj AJ. Selective activation of mechanosensitive ion channels using magnetic particles. J R Soc Interface. 2008;5:855–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hu B, Haj AJ, Dobson J. Receptor-targeted, magneto-mechanical stimulation of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Sci. 2013;14:19276–93.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat Nano. 2008;3:139–43.

    Article  CAS  Google Scholar 

  38. Luzio JP, Bright NA, Pryor PR. The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans. 2007;35:1088–91.

    Article  CAS  PubMed  Google Scholar 

  39. Hoffmann C, Mazari E, Lallet S, Le Borgne R, Marchi V, Gosse C, et al. Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles. Nat Nanotechnol. 2013;8:199–205.

    Article  CAS  PubMed  Google Scholar 

  40. Dejardin T, de la Fuente J, del Pino P, Furlani EP, Mullin M, Smith CA, et al. Influence of both a static magnetic field and penetratin on magnetic nanoparticle delivery into fibroblasts. Nanomedicine. 2011;6:1719–31.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We are thankful to Mikołaj Grzeszkowiak for the work on transmission electron microscopy analysis of the microbeads. We gratefully acknowledge the support from the German Research Foundation through the DFG Research Unit FOR917 (Project PL 281/3-1, TR 408/6-1), from the German Federal Ministry of Education and Research through grants ZIM-KOOP ’STEP-MAG’, and from the Excellence Cluster ‘Nanosystems Initiative Munich’. The work was supported by the International PhD Projects Program of the Foundation for Polish Science operated within the Innovative Economy Operational Program (IE OP) 2007–2013 of the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Mykhaylyk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grześkowiak, B.F., Sánchez-Antequera, Y., Hammerschmid, E. et al. Nanomagnetic Activation as a Way to Control the Efficacy of Nucleic Acid Delivery. Pharm Res 32, 103–121 (2015). https://doi.org/10.1007/s11095-014-1448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1448-6

KEY WORDS

Navigation