Skip to main content

Advertisement

Log in

ABC Transporters in Multi-Drug Resistance and ADME-Tox of Small Molecule Tyrosine Kinase Inhibitors

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The past decade has seen tremendous efforts in the research and development of new chemotherapeutic drugs using target-based approaches. These efforts have led to the discovery of small molecule tyrosine kinase inhibitors (TKIs). Following the initial approval of imatinib by the US FDA in 2001, more than 15 TKIs targeting different tyrosine kinases have been approved, and numerous others are in various phases of clinical evaluation. Unlike conventional chemotherapy that can cause non-discriminating damage to both normal and cancerous cells, TKIs attack cancer-specific targets and therefore have a more favorable safety profile. However, although TKIs have had outstanding success in cancer therapy, there has been increasing evidence of resistance to TKIs. The enhanced efflux of TKIs by ATP-binding cassette (ABC) transporters over-expressed in cancer cells has been found to be one such important resistance mechanism. Another major drawback of TKI therapies that has been increasingly recognized is the extensive inter-individual pharmacokinetic variability, in which ABC transporters seem to play a major role as well. This review covers recent findings on the interactions of small molecule TKIs with ABC transporters. The effects of ABC transporters on anticancer efficacy and the absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) of the small molecule TKIs are summarized in detail. Since TKIs have been found to not only serve as substrates of ABC transporters, but also as modulators of these proteins via inhibition or induction, their influence upon ABC transporters and potential role on TKI-drug interactions are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

ADME-Tox:

Absorption, distribution, metabolism, excretion, and toxicity

ALL:

Acute lymphoblastic leukemia

BCRP:

Breast cancer resistance protein

CML:

Chronic myelogeous leukemia

EGFR:

Epidermal growth factor receptor

MDR:

Multi-drug resistance

MRP1:

Multi-drug resistance protein 1

PDGFR:

Platelet-derived growth factor receptor

P-gp:

P-glycoprotein

SAR:

Structure activity relationship

TKIs:

Tyrosine kinase inhibitors

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Carvalho C, Santos RX, Cardoso S, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16:3267–85.

    PubMed  CAS  Google Scholar 

  2. Guchelaar HJ, ten Napel CH, de Vries EG, Mulder NH. Clinical, toxicological and pharmaceutical aspects of the antineoplastic drug taxol: a review. Clin Oncol. 1994;6:40–8.

    CAS  Google Scholar 

  3. Barabas K, Milner R, Lurie D, Adin C. Cisplatin: a review of toxicities and therapeutic applications. Vet Comp Oncol. 2008;6:1–18.

    PubMed  CAS  Google Scholar 

  4. Hortobagyi GN. Anthracyclines in the treatment of cancer. an overview. Drugs. 1997;54 Suppl 4:1–7.

    PubMed  CAS  Google Scholar 

  5. Sawyers C. Targeted cancer therapy. Nature. 2004;432:294–7.

    PubMed  CAS  Google Scholar 

  6. Fabbro D, Ruetz S, Buchdunger E, et al. Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. Pharmacol Ther. 2002;93:79–98.

    PubMed  CAS  Google Scholar 

  7. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer. 2004;4:361–70.

    PubMed  CAS  Google Scholar 

  8. van der Geer P, Hunter T, Lindberg RA. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol. 1994;10:251–337.

    PubMed  Google Scholar 

  9. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80:179–85.

    PubMed  CAS  Google Scholar 

  10. Eganand SE, Weinberg RA. The pathway to signal achievement. Nature. 1993;365:781–3.

    Google Scholar 

  11. Hanahanand D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Google Scholar 

  12. Porterand AC, Vaillancourt RR. Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene. 1998;17:1343–52.

    Google Scholar 

  13. Goel S, Mani S, Perez-Soler R. Tyrosine kinase inhibitors: a clinical perspective. Curr Oncol Rep. 2002;4:9–19.

    PubMed  Google Scholar 

  14. Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19:5548–57.

    PubMed  CAS  Google Scholar 

  15. Baselga J. Targeting tyrosine kinases in cancer: the second wave. Science. 2006;312:1175–8.

    PubMed  CAS  Google Scholar 

  16. Gishizky ML. Molecular mechanisms of Bcr-Abl-induced oncogenesis. Cytokine Mol Ther. 1996;2:251–61.

    CAS  Google Scholar 

  17. Cortes JE, Talpaz M, Kantarjian H. Chronic myelogenous leukemia: a review. Am J Med. 1996;100:555–70.

    PubMed  CAS  Google Scholar 

  18. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.

    PubMed  CAS  Google Scholar 

  19. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–42.

    PubMed  CAS  Google Scholar 

  20. Kantarjian HM, Cortes JE, O’Brien S, et al. Imatinib mesylate therapy in newly diagnosed patients with Philadelphia chromosome-positive chronic myelogenous leukemia: high incidence of early complete and major cytogenetic responses. Blood. 2003;101:97–100.

    PubMed  CAS  Google Scholar 

  21. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125–34.

    PubMed  CAS  Google Scholar 

  22. Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733–43.

    PubMed  CAS  Google Scholar 

  23. Moore MJ, Goldstein D, Hamm J, et al. Institute of Canada Clinical Trials. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25:1960–6.

    CAS  Google Scholar 

  24. Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet. 2005;366:1527–37.

    PubMed  CAS  Google Scholar 

  25. Shannon KM. Resistance in the land of molecular cancer therapeutics. Cancer Cell. 2002;2:99–102.

    PubMed  CAS  Google Scholar 

  26. Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24:4764–74.

    CAS  Google Scholar 

  27. Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer. 2010;9:75.

    PubMed  PubMed Central  Google Scholar 

  28. Ozvegy-Laczka C, Cserepes J, Elkind NB, Sarkadi B. Tyrosine kinase inhibitor resistance in cancer: role of ABC multidrug transporters. Drug Resist Updates : Rev Comment Antimicrob anticancer chemother. 2005;8:15–26.

    Google Scholar 

  29. Brozik A, Hegedus C, Erdei Z, et al. Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opin Drug Metab Toxicol. 2011;7:623–42.

    PubMed  CAS  Google Scholar 

  30. Usuda J, Ohira T, Suga Y, et al. Breast cancer resistance protein (BCRP) affected acquired resistance to gefitinib in a “never-smoked” female patient with advanced non-small cell lung cancer. Lung Cancer. 2007;58:296–9.

    PubMed  CAS  Google Scholar 

  31. Judson I, Ma P, Peng B, et al. Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: a retrospective population pharmacokinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother Pharmacol. 2005;55:379–86.

    PubMed  CAS  Google Scholar 

  32. Bakerand SD, Hu S. Pharmacokinetic considerations for new targeted therapies. Clin Pharmacol Ther. 2009;85:208–11.

    Google Scholar 

  33. van Erp NP, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009;35:692–706.

    PubMed  Google Scholar 

  34. Oostendorp RL, Buckle T, Beijnen JH, van Tellingen O, Schellens JH. The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Investig New Drugs. 2009;27:31–40.

    CAS  Google Scholar 

  35. Aroraand A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther. 2005;315:971–9.

    Google Scholar 

  36. Pawson T. Regulation and targets of receptor tyrosine kinases. Eur J Cancer. 2002;38 Suppl 5:S3–10.

    PubMed  Google Scholar 

  37. Ullrichand A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–12.

    Google Scholar 

  38. Krauseand DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353:172–87.

    Google Scholar 

  39. Robertson SC, Tynan J, Donoghue DJ. RTK mutations and human syndromes: when good receptors turn bad. Trends Genet : TIG. 2000;16:368.

    PubMed  CAS  Google Scholar 

  40. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    PubMed  CAS  Google Scholar 

  41. Nishikawa R, Ji XD, Harmon RC, et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A. 1994;91:7727–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Zwick E, Bange J, Ullrich A. Receptor tyrosine kinases as targets for anticancer drugs. Trends Mol Med. 2002;8:17–23.

    PubMed  CAS  Google Scholar 

  43. Fanand Z, Mendelsohn J. Therapeutic application of anti-growth factor receptor antibodies. Curr Opin Oncol. 1998;10:67–73.

    Google Scholar 

  44. Andrews DW, Resnicoff M, Flanders AE, et al. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19:2189–200.

    CAS  Google Scholar 

  45. Zwick E, Bange J, Ullrich A. Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr-Relat Cancer. 2001;8:161–73.

    PubMed  CAS  Google Scholar 

  46. Ullrich A, Coussens L, Hayflick JS, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature. 1984;309:418–25.

    PubMed  CAS  Google Scholar 

  47. Hendlerand FJ, Ozanne BW. Human squamous cell lung cancers express increased epidermal growth factor receptors. J Clin Invest. 1984;74:647–51.

    Google Scholar 

  48. Libermann TA, Nusbaum HR, Razon N, et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature. 1985;313:144–7.

    PubMed  CAS  Google Scholar 

  49. Sugawa N, Ekstrand AJ, James CD, Collins VP. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci U S A. 1990;87:8602–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.

    PubMed  CAS  Google Scholar 

  51. Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R. FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist. 2003;8:303–6.

    PubMed  CAS  Google Scholar 

  52. Thomasand SM, Grandis JR. Pharmacokinetic and pharmacodynamic properties of EGFR inhibitors under clinical investigation. Cancer Treat Rev. 2004;30:255–68.

    Google Scholar 

  53. Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101:13306–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Miller VA, Kris MG, Shah N, et al. Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J Clin OncolOff J Am Soc Clin Oncol. 2004;22:1103–9.

    CAS  Google Scholar 

  55. R. Perez-Soler. The role of erlotinib (Tarceva, OSI 774) in the treatment of non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 10:4238 s-4240s (2004).

  56. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial–INTACT 2. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22:785–94.

    CAS  Google Scholar 

  57. Perez-Solerand R, Saltz L. Cutaneous adverse effects with HER1/EGFR-targeted agents: is there a silver lining? J Clin Oncol Off J Am Soc Clin Oncol. 2005;23:5235–46.

    Google Scholar 

  58. Johnstonand SR, Leary A. Lapatinib: a novel EGFR/HER2 tyrosine kinase inhibitor for cancer. Drugs Today. 2006;42:441–53.

    Google Scholar 

  59. Moyand B, Goss PE. Lapatinib: current status and future directions in breast cancer. Oncologist. 2006;11:1047–57.

    Google Scholar 

  60. Solca F, Dahl G, Zoephel A, et al. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J PharmacolExp Ther. 2012;343:342–50.

    CAS  Google Scholar 

  61. Sequist LV, Yang JC, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:3327–34.

    CAS  Google Scholar 

  62. Allen LF, Lenehan PF, Eiseman IA, Elliott WL, Fry DW. Potential benefits of the irreversible pan-erbB inhibitor, CI-1033, in the treatment of breast cancer. Semin Oncol. 2002;29:11–21.

    PubMed  CAS  Google Scholar 

  63. Parikhand AA, Ellis LM. The vascular endothelial growth factor family and its receptors. Hematol Oncol ClinNorth Am. 2004;18:951–71. vii.

    Google Scholar 

  64. Sedlacek HH. Kinase inhibitors in cancer therapy: a look ahead. Drugs. 2000;59:435–76.

    PubMed  CAS  Google Scholar 

  65. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–24.

    PubMed  CAS  Google Scholar 

  66. Hu-Lowe DD, Zou HY, Grazzini ML, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res : Off J Am Assoc Cancer Res. 2008;14:7272–83.

    CAS  Google Scholar 

  67. Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378:1931–9.

    PubMed  CAS  Google Scholar 

  68. Rugo HS, Herbst RS, Liu G, et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23:5474–83.

    CAS  Google Scholar 

  69. Cohen EE, Rosen LS, Vokes EE, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26:4708–13.

    CAS  Google Scholar 

  70. Sternberg CN, Davis ID, Mardiak J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:1061–8.

    CAS  Google Scholar 

  71. Guptaand S, Spiess PE. The prospects of pazopanib in advanced renal cell carcinoma. Ther Adv Urol. 2013;5:223–32.

    Google Scholar 

  72. Morabito A, Piccirillo MC, Falasconi F, et al. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions. Oncologist. 2009;14:378–90.

    PubMed  CAS  Google Scholar 

  73. Robinson BG, Paz-Ares L, Krebs A, Vasselli J, Haddad R. Vandetanib (100 mg) in patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Endocrinol Metab. 2010;95:2664–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Batchelor TT, Duda DG, di Tomaso E, et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:2817–23.

    CAS  Google Scholar 

  75. Ramalingam SS, Belani CP, Mack PC, et al. Phase II study of Cediranib (AZD 2171), an inhibitor of the vascular endothelial growth factor receptor, for second-line therapy of small cell lung cancer (National Cancer Institute #7097). J Thorac Oncol : Off publ Int Assoc Study Lung Cancer. 2010;5:1279–84.

    Google Scholar 

  76. Satoh T, Yamaguchi K, Boku N, et al. Phase I results from a two-part Phase I/II study of cediranib in combination with mFOLFOX6 in Japanese patients with metastatic colorectal cancer. Investig New Drugs. 2012;30:1511–8.

    CAS  Google Scholar 

  77. Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341:164–72.

    PubMed  CAS  Google Scholar 

  78. Shawver LK, Slamon D, Ullrich A. Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell. 2002;1:117–23.

    PubMed  CAS  Google Scholar 

  79. Boschelli F, Arndt K, Gambacorti-Passerini C. Bosutinib: a review of preclinical studies in chronic myelogenous leukaemia. Eur J Cancer. 2010;46:1781–9.

    PubMed  CAS  Google Scholar 

  80. O’Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16:401–12.

    PubMed  PubMed Central  Google Scholar 

  81. Klein I, Sarkadi B, Varadi A. An inventory of the human ABC proteins. Biochim Biophys Acta. 1999;1461:237–62.

    PubMed  CAS  Google Scholar 

  82. Szakacs G, Varadi A, Ozvegy-Laczka C, Sarkadi B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov Today. 2008;13:379–93.

    PubMed  CAS  Google Scholar 

  83. Takara K, Sakaeda T, Okumura K. An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr Pharm Des. 2006;12:273–86.

    PubMed  CAS  Google Scholar 

  84. Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics. 2008;9:105–27.

    PubMed  CAS  Google Scholar 

  85. Maoand Q, Unadkat JD. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J. 2005;7:E118–133.

    Google Scholar 

  86. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11:1156–66.

    PubMed  CAS  Google Scholar 

  87. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.

    PubMed  CAS  Google Scholar 

  88. Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol. 2010;46:308–16.

    PubMed  CAS  Google Scholar 

  89. Deffie AM, Batra JK, Goldenberg GJ. Direct correlation between DNA topoisomerase II activity and cytotoxicity in adriamycin-sensitive and -resistant P388 leukemia cell lines. Cancer Res. 1989;49:58–62.

    PubMed  CAS  Google Scholar 

  90. Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med. 2001;7:584–90.

    PubMed  CAS  Google Scholar 

  91. Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993;74:957–67.

    PubMed  CAS  Google Scholar 

  92. Meister A. Glutathione, ascorbate, and cellular protection. Cancer Res. 1994;54:1969s–75s.

    PubMed  CAS  Google Scholar 

  93. Shen D, Pastan I, Gottesman MM. Cross-resistance to methotrexate and metals in human cisplatin-resistant cell lines results from a pleiotropic defect in accumulation of these compounds associated with reduced plasma membrane binding proteins. Cancer Res. 1998;58:268–75.

    PubMed  CAS  Google Scholar 

  94. Foote SJ, Thompson JK, Cowman AF, Kemp DJ. Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell. 1989;57:921–30.

    PubMed  CAS  Google Scholar 

  95. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–34.

    PubMed  CAS  Google Scholar 

  96. Doran A, Obach RS, Smith BJ, et al. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos : Biol Fate Chem. 2005;33:165–74.

    CAS  Google Scholar 

  97. Mahon FX, Deininger MW, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000;96:1070–9.

    PubMed  CAS  Google Scholar 

  98. Peng XX, Tiwari AK, Wu HC, Chen ZS. Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells. Chin J Cancer. 2012;31:110–8.

    PubMed  PubMed Central  Google Scholar 

  99. Illmer T, Schaich M, Platzbecker U, et al. P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia. 2004;18:401–8.

    PubMed  CAS  Google Scholar 

  100. Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004;104:3739–45.

    PubMed  CAS  Google Scholar 

  101. Widmer N, Rumpold H, Untergasser G, Fayet A, Buclin T, Decosterd LA. Resistance reversal by RNAi silencing of MDR1 in CML cells associated with increase in imatinib intracellular levels. Leukemia. 2007;21:1561–2. author reply 1562–1564.

    PubMed  CAS  Google Scholar 

  102. Burger H, van Tol H, Boersma AW, et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood. 2004;104:2940–2.

    PubMed  CAS  Google Scholar 

  103. Houghton PJ, Germain GS, Harwood FC, et al. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res. 2004;64:2333–7.

    PubMed  CAS  Google Scholar 

  104. Shukla S, Chen ZS, Ambudkar SV. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist Updat : Rev Comment Antimicrob Anticancer Chemother. 2012;15:70–80.

    CAS  Google Scholar 

  105. Mukai M, Che XF, Furukawa T, et al. Reversal of the resistance to STI571 in human chronic myelogenous leukemia K562 cells. Cancer Sci. 2003;94:557–63.

    PubMed  CAS  Google Scholar 

  106. Hegedus C, Ozvegy-Laczka C, Apati A, et al. Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol. 2009;158:1153–64.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Dohse M, Scharenberg C, Shukla S, et al. Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab Dispos : Biol Fate Chem. 2010;38:1371–80.

    CAS  Google Scholar 

  108. Balabanov S, Gontarewicz A, Keller G, et al. Abcg2 overexpression represents a novel mechanism for acquired resistance to the multi-kinase inhibitor Danusertib in BCR-ABL-positive cells in vitro. PLoS One. 2011;6:e19164.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Lemos C, Kathmann I, Giovannetti E, Calhau C, Jansen G, Peters GJ. Impact of cellular folate status and epidermal growth factor receptor expression on BCRP/ABCG2-mediated resistance to gefitinib and erlotinib. Br J Cancer. 2009;100:1120–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Chen YJ, Huang WC, Wei YL, et al. Elevated BCRP/ABCG2 expression confers acquired resistance to gefitinib in wild-type EGFR-expressing cells. PLoS One. 2011;6:e21428.

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Minocha M, Khurana V, Qin B, Pal D, Mitra AK. Enhanced brain accumulation of pazopanib by modulating P-gp and Bcrp1 mediated efflux with canertinib or erlotinib. Int J Pharm. 2012;436:127–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Li J, Karlsson MO, Brahmer J, et al. CYP3A phenotyping approach to predict systemic exposure to EGFR tyrosine kinase inhibitors. J Natl Cancer Inst. 2006;98:1714–23.

    PubMed  CAS  Google Scholar 

  113. Gardner ER, Burger H, van Schaik RH, et al. Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharmacol Ther. 2006;80:192–201.

    PubMed  CAS  Google Scholar 

  114. Zhou L, Schmidt K, Nelson FR, Zelesky V, Troutman MD, Feng B. The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice. Drug Metab Dispos : Biol Fate Chem. 2009;37:946–55.

    CAS  Google Scholar 

  115. Breedveld P, Pluim D, Cipriani G, et al. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res. 2005;65:2577–82.

    PubMed  CAS  Google Scholar 

  116. Bihorel S, Camenisch G, Lemaire M, Scherrmann JM. Influence of breast cancer resistance protein (Abcg2) and p-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec) across the mouse blood–brain barrier. J Neurochem. 2007;102:1749–57.

    PubMed  CAS  Google Scholar 

  117. Agarwal S, Mittapalli RK, Zellmer DM, et al. Active efflux of Dasatinib from the brain limits efficacy against murine glioblastoma: broad implications for the clinical use of molecularly targeted agents. Mol Cancer Ther. 2012;11:2183–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Chen Y, Agarwal S, Shaik NM, Chen C, Yang Z, Elmquist WF. P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J Pharmacol Exp Ther. 2009;330:956–63.

    PubMed  CAS  Google Scholar 

  119. Lagas JS, van Waterschoot RA, van Tilburg VA, et al. Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clinical Cancer Res : Off J Am Assoc Cancer Res. 2009;15:2344–51.

    CAS  Google Scholar 

  120. Warren MS, Zerangue N, Woodford K, et al. Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res : Off J Ital Pharmacol Soc. 2009;59:404–13.

    CAS  Google Scholar 

  121. Sen R, Natarajan K, Bhullar J, et al. The novel BCR-ABL and FLT3 inhibitor ponatinib is a potent inhibitor of the MDR-associated ATP-binding cassette transporter ABCG2. Mol Cancer Ther. 2012;11:2033–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Agarwal S, Sane R, Gallardo JL, Ohlfest JR, Elmquist WF. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther. 2010;334:147–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y. Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther. 2010;333:788–96.

    PubMed  CAS  Google Scholar 

  124. Marchetti S, de Vries NA, Buckle T, et al. Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1−/−/Mdr1a/1b−/− (triple-knockout) and wild-type mice. Mol Cancer Ther. 2008;7:2280–7.

    PubMed  CAS  Google Scholar 

  125. Polli JW, Olson KL, Chism JP, et al. An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos : Biol Fate Chem. 2009;37:439–42.

    CAS  Google Scholar 

  126. Polli JW, Humphreys JE, Harmon KA, et al. The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab Dispos : Biol Fate Chem. 2008;36:695–701.

    CAS  Google Scholar 

  127. Cusatis G, Gregorc V, Li J, et al. Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst. 2006;98:1739–42.

    PubMed  CAS  Google Scholar 

  128. Lagas JS, van Waterschoot RA, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 2010;9:319–26.

    PubMed  CAS  Google Scholar 

  129. Tang SC, de Vries N, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) gene dosage on plasma pharmacokinetics and brain accumulation of dasatinib, sorafenib, and sunitinib. J Pharmacol Exp Ther. 2013;346:486–94.

    PubMed  CAS  Google Scholar 

  130. Poller B, Iusuf D, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Differential impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on axitinib brain accumulation and oral plasma pharmacokinetics. Drug Metab Dispos : Biol Fate Chem. 2011;39:729–35.

    CAS  Google Scholar 

  131. Minocha M, Khurana V, Qin B, Pal D, Mitra AK. Co-administration strategy to enhance brain accumulation of vandetanib by modulating P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp1/Abcg2) mediated efflux with m-TOR inhibitors. Int J Pharm. 2012;434:306–14.

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Agarwal S, Sane R, Ohlfest JR, Elmquist WF. The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther. 2011;336:223–33.

    PubMed  CAS  PubMed Central  Google Scholar 

  133. Wang T, Agarwal S, Elmquist WF. Brain distribution of cediranib is limited by active efflux at the blood–brain barrier. J Pharmacol Exp Ther. 2012;341:386–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Yanase K, Tsukahara S, Asada S, Ishikawa E, Imai Y, Sugimoto Y. Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther. 2004;3:1119–25.

    PubMed  CAS  Google Scholar 

  135. Villar VH, Vogler O, Martinez-Serra J, et al. Nilotinib counteracts P-glycoprotein-mediated multidrug resistance and synergizes the antitumoral effect of doxorubicin in soft tissue sarcomas. PLoS One. 2012;7:e37735.

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Dai CL, Tiwari AK, Wu CP, et al. Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 2008;68:7905–14.

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Shukla S, Robey RW, Bates SE, Ambudkar SV. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos : Biol Fate Chem. 2009;37:359–65.

    CAS  Google Scholar 

  138. Reyner EL, Sevidal S, West MA, et al. In vitro characterization of axitinib interactions with human efflux and hepatic uptake transporters: implications for disposition and drug interactions. Drug Metab Dispos : Biol Fate Chem. 2013;41:1575–83.

    CAS  Google Scholar 

  139. Ozvegy-Laczka C, Hegedus T, Varady G, et al. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol. 2004;65:1485–95.

    PubMed  Google Scholar 

  140. Furman WL, Navid F, Daw NC, et al. Tyrosine kinase inhibitor enhances the bioavailability of oral irinotecan in pediatric patients with refractory solid tumors. J Clin Oncol : Off J Am Soc Clin Oncol. 2009;27:4599–604.

    CAS  Google Scholar 

  141. Shi Z, Peng XX, Kim IW, et al. Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res. 2007;67:11012–20.

    PubMed  CAS  Google Scholar 

  142. Perry J, Ghazaly E, Kitromilidou C, McGrowder EH, Joel S, Powles T. A synergistic interaction between lapatinib and chemotherapy agents in a panel of cell lines is due to the inhibition of the efflux pump BCRP. Mol Cancer Ther. 2010;9:3322–9.

    PubMed  CAS  Google Scholar 

  143. Dai CL, Liang YJ, Wang YS, et al. Sensitization of ABCG2-overexpressing cells to conventional chemotherapeutic agent by sunitinib was associated with inhibiting the function of ABCG2. Cancer Lett. 2009;279:74–83.

    PubMed  CAS  Google Scholar 

  144. Wu CP, Sim HM, Huang YH, et al. Overexpression of ATP-binding cassette transporter ABCG2 as a potential mechanism of acquired resistance to vemurafenib in BRAF(V600E) mutant cancer cells. Biochem Pharmacol. 2013;85:325–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Zhou WJ, Zhang X, Cheng C, et al. Crizotinib (PF-02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P-glycoprotein. Br J Pharmacol. 2012;166:1669–83.

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Azzariti A, Porcelli L, Simone GM, et al. Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences. Cancer Chemother Pharmacol. 2010;65:335–46.

    PubMed  CAS  Google Scholar 

  147. Erlichman C, Boerner SA, Hallgren CG, et al. The HER tyrosine kinase inhibitor CI1033 enhances cytotoxicity of 7-ethyl-10-hydroxycamptothecin and topotecan by inhibiting breast cancer resistance protein-mediated drug efflux. Cancer Res. 2001;61:739–48.

    PubMed  CAS  Google Scholar 

  148. Tao LY, Liang YJ, Wang F, et al. Cediranib (recentin, AZD2171) reverses ABCB1- and ABCC1-mediated multidrug resistance by inhibition of their transport function. Cancer Chemother Pharmacol. 2009;64:961–9.

    PubMed  CAS  Google Scholar 

  149. Tiwari AK, Sodani K, Dai CL, et al. Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett. 2013;328:307–17.

    PubMed  CAS  PubMed Central  Google Scholar 

  150. Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res : Off J Am Assoc Cancer Res. 2000;6:4885–92.

    CAS  Google Scholar 

  151. Hiwase DK, White D, Zrim S, Saunders V, Melo JV, Hughes TP. Nilotinib-mediated inhibition of ABCB1 increases intracellular concentration of dasatinib in CML cells: implications for combination TKI therapy. Leukemia. 2010;24:658–60.

    PubMed  CAS  Google Scholar 

  152. Weisberg E, Catley L, Wright RD, et al. Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL + leukemias. Blood. 2007;109:2112–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  153. White DL, Saunders VA, Quinn SR, Manley PW, Hughes TP. Imatinib increases the intracellular concentration of nilotinib, which may explain the observed synergy between these drugs. Blood. 2007;109:3609–10.

    PubMed  CAS  Google Scholar 

  154. Bellmunt J, Eisen T, Fishman M, Quinn D. Experience with sorafenib and adverse event management. Crit Rev Oncol/Hematol. 2011;78:24–32.

    Google Scholar 

  155. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    PubMed  CAS  Google Scholar 

  156. Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.

    PubMed  CAS  Google Scholar 

  157. Kantarjian HM, Talpaz M, O’Brien S, et al. Imatinib mesylate for Philadelphia chromosome-positive, chronic-phase myeloid leukemia after failure of interferon-alpha: follow-up results. Clin Cancer res : Off J Am Assoc Cancer Res. 2002;8:2177–87.

    CAS  Google Scholar 

  158. Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 2001;344:1052–6.

    PubMed  CAS  Google Scholar 

  159. Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47:6658–61.

    PubMed  CAS  Google Scholar 

  160. Quintas-Cardamaand A, Cortes J. Nilotinib: a phenylamino-pyrimidine derivative with activity against BCR-ABL. KIT PDGFR Kinases Future Oncol. 2008;4:611–21.

    Google Scholar 

  161. Julianoand RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455:152–62.

    Google Scholar 

  162. Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992;258:1650–4.

    PubMed  CAS  Google Scholar 

  163. S.P. Cole. Targeting Multidrug Resistance Protein 1 (MRP1, ABCC1): Past, Present, and Future. Annual review of pharmacology and toxicology(2013).

  164. Goldstein LJ, Galski H, Fojo A, et al. Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst. 1989;81:116–24.

    PubMed  CAS  Google Scholar 

  165. Campos L, Guyotat D, Archimbaud E, et al. Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood. 1992;79:473–6.

    PubMed  CAS  Google Scholar 

  166. Chan HS, Haddad G, Thorner PS, et al. P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N Engl J Med. 1991;325:1608–14.

    PubMed  CAS  Google Scholar 

  167. Bradleyand G, Ling V. P-glycoprotein, multidrug resistance and tumor progression. Cancer Metastasis Rev. 1994;13:223–33.

    Google Scholar 

  168. Trock BJ, Leonessa F, Clarke R. Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst. 1997;89:917–31.

    PubMed  CAS  Google Scholar 

  169. Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95:15665–70.

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Diestra JE, Scheffer GL, Catala I, et al. Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J Pathol. 2002;198:213–9.

    PubMed  CAS  Google Scholar 

  171. Yang CH, Schneider E, Kuo ML, Volk EL, Rocchi E, Chen YC. BCRP/MXR/ABCP expression in topotecan-resistant human breast carcinoma cells. Biochem Pharmacol. 2000;60:831–7.

    PubMed  CAS  Google Scholar 

  172. Robey RW, Medina-Perez WY, Nishiyama K, et al. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res : Off J Am Assoc Cancer Res. 2001;7:145–52.

    CAS  Google Scholar 

  173. Candeil L, Gourdier I, Peyron D, et al. ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases. Int J Cancer J Int Du Cancer. 2004;109:848–54.

    CAS  Google Scholar 

  174. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J Histochem Cytochem. 1989;37:159–64.

    PubMed  CAS  Google Scholar 

  175. Schinkeland AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29.

    Google Scholar 

  176. Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U S A. 1997;94:2031–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol. 2005;204:216–37.

    PubMed  CAS  Google Scholar 

  178. Evers R, Zaman GJ, van Deemter L, et al. Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J Clin Invest. 1996;97:1211–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  179. Hipfner DR, Deeley RG, Cole SP. Structural, mechanistic and clinical aspects of MRP1. Biochim Biophys Acta. 1999;1461:359–76.

    PubMed  CAS  Google Scholar 

  180. Merino G, van Herwaarden AE, Wagenaar E, Jonker JW, Schinkel AH. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol. 2005;67:1765–71.

    PubMed  CAS  Google Scholar 

  181. Litman T, Brangi M, Hudson E, et al. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci. 2000;113(Pt 11):2011–21.

    PubMed  CAS  Google Scholar 

  182. Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem. 2003;278:22644–9.

    PubMed  CAS  Google Scholar 

  183. Robey RW, Honjo Y, van de Laar A, et al. A functional assay for detection of the mitoxantrone resistance protein, MXR (ABCG2). Biochim Biophys Acta. 2001;1512:171–82.

    PubMed  CAS  Google Scholar 

  184. An G, Wu F, Morris ME. 5,7-Dimethoxyflavone and multiple flavonoids in combination alter the ABCG2-mediated tissue distribution of mitoxantrone in mice. Pharm Res. 2011;28:1090–9.

    PubMed  CAS  Google Scholar 

  185. Zhou XF, Zhang L, Tseng E, et al. New 4-aryl-1,4-dihydropyridines and 4-arylpyridines as P-glycoprotein inhibitors. Drug Metab Dispos : Biol Fate Chem. 2005;33:321–8.

    CAS  Google Scholar 

  186. Elkind NB, Szentpetery Z, Apati A, et al. Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res. 2005;65:1770–7.

    PubMed  CAS  Google Scholar 

  187. Noguchi K, Kawahara H, Kaji A, Katayama K, Mitsuhashi J, Sugimoto Y. Substrate-dependent bidirectional modulation of P-glycoprotein-mediated drug resistance by erlotinib. Cancer Sci. 2009;100:1701–7.

    PubMed  CAS  Google Scholar 

  188. Zhangand Y, Wang Q. Sunitinib Reverse Multidrug Resistance in Gastric Cancer Cells by Modulating Stat3 and Inhibiting P-gp Function. Cell Biochem Biophys. 2013;67:575–81.

    Google Scholar 

  189. Mahon FX, Hayette S, Lagarde V, et al. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res. 2008;68:9809–16.

    PubMed  CAS  Google Scholar 

  190. S. Chuan Tang, L.N. Nguyen, R.W. Sparidans, E. Wagenaar, J.H. Beijnen, and A.H. Schinkel. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. International journal of cancer Journal international du cancer(2013).

  191. Durmus S, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Oral availability and brain penetration of the B-RAFV600E inhibitor vemurafenib can be enhanced by the P-GLYCOprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Mol Pharm. 2012;9:3236–45.

    PubMed  CAS  Google Scholar 

  192. Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF. Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther. 2012;342:33–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  193. Mittapalli RK, Vaidhyanathan S, Dudek AZ, Elmquist WF. Mechanisms limiting distribution of the threonine-protein kinase B-RaF(V600E) inhibitor dabrafenib to the brain: implications for the treatment of melanoma brain metastases. J Pharmacol Exp Ther. 2013;344:655–64.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Shao, J., Markowitz, J.S. et al. ABC Transporters in Multi-Drug Resistance and ADME-Tox of Small Molecule Tyrosine Kinase Inhibitors. Pharm Res 31, 2237–2255 (2014). https://doi.org/10.1007/s11095-014-1389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1389-0

KEY WORDS

Navigation