Skip to main content

The Role of ABC Multidrug Transporters in Resistance to Targeted Anticancer Kinase Inhibitors

  • Chapter
  • First Online:
Resistance to Targeted ABC Transporters in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 4))

Abstract

Currently the main treatment option for generalized or metastatic cancer is chemotherapy. Besides conventional chemotherapeutics, small molecule targeted kinase inhibitors (TKIs), which are specifically capable of eliminating key pathways driving cancer growth and metastasis, are also applied in cancer treatment. The hydrophobic TKI molecules need to pass the cell membrane to reach their intracellular targets, and in many cases become substrates of ABC multidrug (MDR) transporters. These large membrane proteins, by using the energy of cellular ATP, actively extrude a wide variety of xeno- and endobiotics from the cells. Tumor cells, and especially cancer stem cells, abuse this promiscuous transporter capacity to protect themselves against therapeutic molecules, including many TKIs. Importantly, the interaction/extrusion by MDR-ABC transporters is not related to the specific, targeted mechanism of TKI action. In this review, we present the key TKIs currently used in cancer therapy, and discuss their interactions with MDR-ABC transporters. We also describe the methods for studying various forms of direct MDR-ABC and TKI interactions, and present a framework for understanding a complex regulation of transporter expression and function by these therapeutic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ADME-Tox:

Absorption, distribution, metabolism, excretion, and toxicity

EGFR:

Epidermal growth factor receptor

MDR:

Multidrug resistance

P-gp:

P-glycoprotein

SP:

Side population

TKI:

Targeted kinase inhibitor

References

  1. Sawyers C. Targeted cancer therapy. Nature. 2004;432(7015):294–7.

    CAS  PubMed  Google Scholar 

  2. Sharma SV, Settleman J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 2007;21(24):3214–31.

    CAS  PubMed  Google Scholar 

  3. Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68(9):3077–80. discussion 3080.

    CAS  PubMed  Google Scholar 

  4. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28–39.

    PubMed  Google Scholar 

  5. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–65.

    CAS  PubMed  Google Scholar 

  6. Futreal PA, et al. A census of human cancer genes. Nat Rev Cancer. 2004;4(3):177–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Santarius T, et al. A census of amplified and overexpressed human cancer genes. Nat Rev Cancer. 2010;10(1):59–64.

    CAS  PubMed  Google Scholar 

  8. Manning G, et al. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34.

    CAS  PubMed  Google Scholar 

  9. Davies H, et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 2005;65(17):7591–5.

    CAS  PubMed  Google Scholar 

  10. Greenman C, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446(7132):153–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Faderl S, et al. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341(3):164–72.

    CAS  PubMed  Google Scholar 

  12. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96(10):3343–56.

    CAS  PubMed  Google Scholar 

  13. Quintas-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 2009;113(8):1619–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Smith KM, Yacobi R, Van Etten RA. Autoinhibition of Bcr-Abl through its SH3 domain. Mol Cell. 2003;12(1):27–37.

    CAS  PubMed  Google Scholar 

  15. Liu J, et al. BCR-ABL tyrosine kinase is autophosphorylated or transphosphorylates P160 BCR on tyrosine predominantly within the first BCR exon. Oncogene. 1993;8(1):101–9.

    CAS  PubMed  Google Scholar 

  16. Pendergast AM, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell. 1993;75(1):175–85.

    CAS  PubMed  Google Scholar 

  17. Puil L, et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J. 1994;13(4):764–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5(3):172–83.

    CAS  PubMed  Google Scholar 

  19. Buchdunger E, et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 1996;56(1):100–4.

    CAS  PubMed  Google Scholar 

  20. Druker BJ, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2(5):561–6.

    CAS  PubMed  Google Scholar 

  21. Carroll M, et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood. 1997;90(12):4947–52.

    CAS  PubMed  Google Scholar 

  22. Deininger MW, et al. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood. 1997;90(9):3691–8.

    CAS  PubMed  Google Scholar 

  23. Gambacorti-Passerini C, et al. Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL + leukemic cells and induces apoptosis. Blood Cells Mol Dis. 1997;23(3):380–94.

    CAS  PubMed  Google Scholar 

  24. Weisberg E, et al. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer. 2007;7(5):345–56.

    CAS  PubMed  Google Scholar 

  25. Druker BJ, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17.

    CAS  PubMed  Google Scholar 

  26. Hochhaus A, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia. 2009;23(6):1054–61.

    CAS  PubMed  Google Scholar 

  27. Milojkovic D, Apperley J. Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin Cancer Res. 2009;15(24):7519–27.

    CAS  PubMed  Google Scholar 

  28. Santos FP, et al. Evolution of therapies for chronic myelogenous leukemia. Cancer J. 2011;17(6):465–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Khoury HJ, et al. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood. 2012;119(15):3403–12.

    CAS  PubMed  Google Scholar 

  30. O’Hare T, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12.

    PubMed Central  PubMed  Google Scholar 

  31. Gozgit JM, et al. Potent activity of ponatinib (AP24534) in models of FLT3-driven acute myeloid leukemia and other hematologic malignancies. Mol Cancer Ther. 2011;10(6):1028–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Gontarewicz A, Brummendorf TH. Danusertib (formerly PHA-739358)—a novel combined pan-aurora kinases and third generation Bcr-Abl tyrosine kinase inhibitor. Recent Results Cancer Res. 2010;184:199–214.

    CAS  PubMed  Google Scholar 

  33. Gontarewicz A, et al. Simultaneous targeting of aurora kinases and Bcr-Abl kinase by the small molecule inhibitor PHA-739358 is effective against imatinib-resistant BCR-ABL mutations including T315I. Blood. 2008;111(8):4355–64.

    CAS  PubMed  Google Scholar 

  34. Hennequin LF, et al. N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J Med Chem. 2006;49(22):6465–88.

    CAS  PubMed  Google Scholar 

  35. Schenone S, et al. Novel dual Src/Abl inhibitors for hematologic and solid malignancies. Expert Opin Investig Drugs. 2010;19(8):931–45.

    CAS  PubMed  Google Scholar 

  36. Holbro T, Hynes NE. ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol. 2004;44:195–217.

    CAS  PubMed  Google Scholar 

  37. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–54.

    CAS  PubMed  Google Scholar 

  38. Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21(2):177–84.

    CAS  PubMed  Google Scholar 

  39. Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol. 2010;7(9):493–507.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Ryan AJ, Wedge SR. ZD6474–a novel inhibitor of VEGFR and EGFR tyrosine kinase activity. Br J Cancer. 2005;92 Suppl 1:S6–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Torrance CJ, et al. Combinatorial chemoprevention of intestinal neoplasia. Nat Med. 2000;6(9):1024–8.

    CAS  PubMed  Google Scholar 

  42. Rabindran SK, et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004;64(11):3958–65.

    CAS  PubMed  Google Scholar 

  43. Ocana A, Amir E. Irreversible pan-ErbB tyrosine kinase inhibitors and breast cancer: current status and future directions. Cancer Treat Rev. 2009;35(8):685–91.

    CAS  PubMed  Google Scholar 

  44. Perez EA, Spano JP. Current and emerging targeted therapies for metastatic breast cancer. Cancer. 2012;118(12):3014–25.

    PubMed  Google Scholar 

  45. Awada A, Bozovic-Spasojevic I, Chow L. New therapies in HER2-positive breast cancer: a major step towards a cure of the disease? Cancer Treat Rev. 2012;38(5):494–504.

    CAS  PubMed  Google Scholar 

  46. Rocha-Lima CM, et al. EGFR targeting of solid tumors. Cancer Control. 2007;14(3):295–304.

    PubMed  Google Scholar 

  47. Sharma SV, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.

    CAS  PubMed  Google Scholar 

  48. Janne PA, Gray N, Settleman J. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov. 2009;8(9):709–23.

    CAS  PubMed  Google Scholar 

  49. Hegedus C, et al. Interaction of ABC multidrug transporters with anticancer protein kinase inhibitors: substrates and/or inhibitors? Curr Cancer Drug Targets. 2009;9(3):252–72.

    CAS  PubMed  Google Scholar 

  50. Bucheit AD, Davies MA. Emerging insights into resistance to BRAF inhibitors in melanoma. Biochem Pharmacol. 2014;87(3):381–9.

    CAS  PubMed  Google Scholar 

  51. Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol. 2007;25(7):884–96.

    CAS  PubMed  Google Scholar 

  52. Sulkes A. Novel multitargeted anticancer oral therapies: sunitinib and sorafenib as a paradigm. Isr Med Assoc J. 2010;12(10):628–32.

    PubMed  Google Scholar 

  53. Mi YJ, et al. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res. 2010;70(20):7981–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Strumberg D, et al. Phase I dose escalation study of telatinib (BAY 57-9352) in patients with advanced solid tumours. Br J Cancer. 2008;99(10):1579–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Gross-Goupil M, et al. Axitinib: a review of its safety and efficacy in the treatment of adults with advanced renal cell carcinoma. Clin Med Insights Oncol. 2013;7:269–77.

    PubMed Central  PubMed  Google Scholar 

  56. Zhao XQ, et al. Tandutinib (MLN518/CT53518) targeted to stem-like cells by inhibiting the function of ATP-binding cassette subfamily G member 2. Eur J Pharm Sci. 2013;49(3):441–50.

    CAS  PubMed  Google Scholar 

  57. Zarrinkar PP, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114(14):2984–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer. 2010;9:75.

    PubMed Central  PubMed  Google Scholar 

  59. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.

    CAS  PubMed  Google Scholar 

  60. Szakacs G, et al. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov Today. 2008;13(9–10):379–93.

    CAS  PubMed  Google Scholar 

  61. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    CAS  PubMed  Google Scholar 

  62. Reya T, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    CAS  PubMed  Google Scholar 

  63. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68.

    CAS  PubMed  Google Scholar 

  64. Regenbrecht CR, Lehrach H, Adjaye J. Stemming cancer: functional genomics of cancer stem cells in solid tumors. Stem Cell Rev. 2008;4(4):319–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Bao S, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    CAS  PubMed  Google Scholar 

  66. Hambardzumyan D, Becher OJ, Holland EC. Cancer stem cells and survival pathways. Cell Cycle. 2008;7(10):1371–8.

    CAS  PubMed  Google Scholar 

  67. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):75–84.

    Google Scholar 

  68. Zhou S, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–34.

    CAS  PubMed  Google Scholar 

  69. Kim M, et al. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res. 2002;8(1):22–8.

    CAS  PubMed  Google Scholar 

  70. Zhou S, et al. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A. 2002;99(19):12339–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Krishnamurthy P, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem. 2004;279(23):24218–25.

    CAS  PubMed  Google Scholar 

  72. Martin CM, et al. Hypoxia-inducible factor-2alpha transactivates Abcg2 and promotes cytoprotection in cardiac side population cells. Circ Res. 2008;102(9):1075–81.

    CAS  PubMed  Google Scholar 

  73. Hirschmann-Jax C, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A. 2004;101(39):14228–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Haraguchi N, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006;24(3):506–13.

    CAS  PubMed  Google Scholar 

  75. Kruger JA, et al. Characterization of stem cell-like cancer cells in immune-competent mice. Blood. 2006;108(12):3906–12.

    CAS  PubMed  Google Scholar 

  76. Ho MM, et al. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 2007;67(10):4827–33.

    CAS  PubMed  Google Scholar 

  77. Huang D, et al. Isolation and identification of cancer stem-like cells in esophageal carcinoma cell lines. Stem Cells Dev. 2009;18(3):465–73.

    CAS  PubMed  Google Scholar 

  78. Zhang P, et al. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Lett. 2009;277(2):227–34.

    CAS  PubMed  Google Scholar 

  79. Robey RW, et al. ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev. 2007;26(1):39–57.

    CAS  PubMed  Google Scholar 

  80. Patrawala L, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res. 2005;65(14):6207–19.

    CAS  PubMed  Google Scholar 

  81. Tusnady GE, et al. Membrane topology of human ABC proteins. FEBS Lett. 2006;580(4):1017–22.

    CAS  PubMed  Google Scholar 

  82. Giacomini KM, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

    CAS  PubMed  Google Scholar 

  83. Szakacs G, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–34.

    CAS  PubMed  Google Scholar 

  84. Sarkadi B, et al. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev. 2006;86(4):1179–236.

    CAS  PubMed  Google Scholar 

  85. Glavinas H, et al. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv. 2004;1(1):27–42.

    CAS  PubMed  Google Scholar 

  86. Fletcher JI, et al. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 2010;10(2):147–56.

    CAS  PubMed  Google Scholar 

  87. Landis SH, et al. Disruptions in liver function among cancer patients and patients treated with tyrosine kinase inhibiting drugs: comparisons of two population-based databases. J Cancer Epidemiol. 2013;2013:358285.

    PubMed Central  PubMed  Google Scholar 

  88. Dehghan A, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372(9654):1953–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Kolz M, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5(6):e1000504.

    PubMed Central  PubMed  Google Scholar 

  90. Woodward OM, et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009;106(25):10338–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Susanto J, et al. Porphyrin homeostasis maintained by ABCG2 regulates self-renewal of embryonic stem cells. PLoS One. 2008;3(12):e4023.

    PubMed Central  PubMed  Google Scholar 

  92. Sarkadi B, et al. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem. 1992;267(7):4854–8.

    CAS  PubMed  Google Scholar 

  93. Bakos E, et al. Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain. J Biol Chem. 1998;273(48):32167–75.

    CAS  PubMed  Google Scholar 

  94. Ozvegy C, et al. Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun. 2001;285(1):111–7.

    CAS  PubMed  Google Scholar 

  95. Telbisz A, et al. Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter. Biochim Biophys Acta. 2007;1768(11):2698–713.

    CAS  PubMed  Google Scholar 

  96. Pal A, et al. Cholesterol potentiates ABCG2 activity in a heterologous expression system: improved in vitro model to study function of human ABCG2. J Pharmacol Exp Ther. 2007;321(3):1085–94.

    CAS  PubMed  Google Scholar 

  97. Telbisz A, et al. Effects of the lipid environment, cholesterol and bile acids on the function of purified, reconstituted human ABCG2 protein. Biochem J. 2013;450:387–95.

    CAS  PubMed  Google Scholar 

  98. Kimura Y, et al. Modulation of drug-stimulated ATPase activity of human MDR1/P-glycoprotein by cholesterol. Biochem J. 2007;401(2):597–605.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Sharom FJ. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function. Front Oncol. 2014;4:41.

    PubMed Central  PubMed  Google Scholar 

  100. Bacso Z, et al. Raft and cytoskeleton associations of an ABC transporter: P-glycoprotein. Cytometry A. 2004;61(2):105–16.

    PubMed  Google Scholar 

  101. Hegedus C, et al. Ins and outs of the ABCG2 multidrug transporter: an update on in vitro functional assays. Adv Drug Deliv Rev. 2009;61(1):47–56.

    CAS  PubMed  Google Scholar 

  102. Krupka RM. Uncoupled active transport mechanisms accounting for low selectivity in multidrug carriers: P-glycoprotein and SMR antiporters. J Membr Biol. 1999;172(2):129–43.

    CAS  PubMed  Google Scholar 

  103. Hegedus C, et al. Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol. 2009;158(4):1153–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Roche S, et al. Development of a high-performance liquid chromatographic-mass spectrometric method for the determination of cellular levels of the tyrosine kinase inhibitors lapatinib and dasatinib. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(31):3982–90.

    CAS  PubMed  Google Scholar 

  105. Couchman L, et al. An automated method for the measurement of a range of tyrosine kinase inhibitors in human plasma or serum using turbulent flow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2012;403(6):1685–95.

    CAS  PubMed  Google Scholar 

  106. Lankheet NA, et al. Method development and validation for the quantification of dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, sorafenib and sunitinib in human plasma by liquid chromatography coupled with tandem mass spectrometry. Biomed Chromatogr. 2013;27(4):466–76.

    CAS  PubMed  Google Scholar 

  107. Jovelet C, et al. Influence of the multidrug transporter P-glycoprotein on the intracellular pharmacokinetics of vandetanib. Eur J Drug Metab Pharmacokinet. 2013;38(3):149–57.

    CAS  PubMed  Google Scholar 

  108. Melchior DL, et al. Determining P-glycoprotein-drug interactions: evaluation of reconstituted P-glycoprotein in a liposomal system and LLC-MDR1 polarized cell monolayers. J Pharmacol Toxicol Methods. 2012;65(2):64–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Shukla S, et al. The calcium channel blockers, 1,4-dihydropyridines, are substrates of the multidrug resistance-linked ABC drug transporter, ABCG2. Biochemistry. 2006;45(29):8940–51.

    CAS  PubMed  Google Scholar 

  110. Shukla S, Sauna ZE, Ambudkar SV. Evidence for the interaction of imatinib at the transport-substrate site(s) of the multidrug-resistance-linked ABC drug transporters ABCB1 (P-glycoprotein) and ABCG2. Leukemia. 2007;22:445–7.

    PubMed  Google Scholar 

  111. Mechetner EB, et al. P-glycoprotein function involves conformational transitions detectable by differential immunoreactivity. Proc Natl Acad Sci U S A. 1997;94(24):12908–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Ozvegy-Laczka C, et al. Function-dependent conformational changes of the ABCG2 multidrug transporter modify its interaction with a monoclonal antibody on the cell surface. J Biol Chem. 2005;280(6):4219–27.

    PubMed  Google Scholar 

  113. Shukla S, et al. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos. 2009;37(2):359–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Telbisz A, et al. Antibody binding shift assay for rapid screening of drug interactions with the human ABCG2 multidrug transporter. Eur J Pharm Sci. 2012;45(1–2):101–9.

    CAS  PubMed  Google Scholar 

  115. Hegedus C, et al. Interaction of the EGFR inhibitors gefitinib, vandetanib, pelitinib and neratinib with the ABCG2 multidrug transporter: implications for the emergence and reversal of cancer drug resistance. Biochem Pharmacol. 2012;84(3):260–7.

    CAS  PubMed  Google Scholar 

  116. Tang C, Prueksaritanont T. Use of in vivo animal models to assess pharmacokinetic drug-drug interactions. Pharm Res. 2010;27(9):1772–87.

    CAS  PubMed  Google Scholar 

  117. Baltes S, et al. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology. 2007;52(2):333–46.

    CAS  PubMed  Google Scholar 

  118. Yamazaki M, et al. In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther. 2001;296(3):723–35.

    CAS  PubMed  Google Scholar 

  119. Scheer N, et al. Generation and characterization of a novel multidrug resistance protein 2 humanized mouse line. Drug Metab Dispos. 2012;40(11):2212–8.

    CAS  PubMed  Google Scholar 

  120. van de Steeg E, et al. Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos. 2009;37(2):277–81.

    PubMed  Google Scholar 

  121. Hegedus T, et al. Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim Biophys Acta. 2002;1587(2–3):318–25.

    CAS  PubMed  Google Scholar 

  122. Ozvegy-Laczka C, et al. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol. 2004;65(6):1485–95.

    PubMed  Google Scholar 

  123. Burger H, et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood. 2004;104(9):2940–2.

    CAS  PubMed  Google Scholar 

  124. Houghton PJ, et al. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res. 2004;64(7):2333–7.

    CAS  PubMed  Google Scholar 

  125. Brendel C, et al. Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia. 2007;21(6):1267–75.

    CAS  PubMed  Google Scholar 

  126. Giannoudis A, et al. Effective dasatinib uptake may occur without human organic cation transporter 1 (hOCT1): implications for the treatment of imatinib-resistant chronic myeloid leukemia. Blood. 2008;112(8):3348–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Hamada A, et al. Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther. 2003;307(2):824–8.

    CAS  PubMed  Google Scholar 

  128. Illmer T, et al. P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia. 2004;18(3):401–8.

    CAS  PubMed  Google Scholar 

  129. Thomas J, et al. Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004;104(12):3739–45.

    CAS  PubMed  Google Scholar 

  130. White DL, et al. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood. 2006;108(2):697–704.

    CAS  PubMed  Google Scholar 

  131. Kotaki M, et al. Anti-proliferative effect of the abl tyrosine kinase inhibitor STI571 on the P-glycoprotein positive K562/ADM cell line. Cancer Lett. 2003;199(1):61–8.

    CAS  PubMed  Google Scholar 

  132. Nakanishi T, et al. Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood. 2006;108(2):678–84.

    CAS  PubMed  Google Scholar 

  133. Dohse M, et al. Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab Dispos. 2010;38(8):1371–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Tamura A, et al. In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs. Drug Metab Pharmacokinet. 2007;22(6):428–40.

    CAS  PubMed  Google Scholar 

  135. Pick A, Klinkhammer W, Wiese M. Specific inhibitors of the breast cancer resistance protein (BCRP). ChemMedChem. 2010;5(9):1498–505.

    CAS  PubMed  Google Scholar 

  136. Mukai M, et al. Reversal of the resistance to STI571 in human chronic myelogenous leukemia K562 cells. Cancer Sci. 2003;94(6):557–63.

    CAS  PubMed  Google Scholar 

  137. Hiwase DK, et al. Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications. Clin Cancer Res. 2008;14(12):3881–8.

    CAS  PubMed  Google Scholar 

  138. Mahon FX, et al. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res. 2008;68(23):9809–16.

    CAS  PubMed  Google Scholar 

  139. Haouala A, et al. siRNA-mediated knock-down of P-glycoprotein expression reveals distinct cellular disposition of anticancer tyrosine kinases inhibitors. Drug Metab Lett. 2010;4(2):114–9.

    CAS  PubMed  Google Scholar 

  140. Shukla S, et al. Synthesis and characterization of a BODIPY conjugate of the BCR-ABL kinase inhibitor Tasigna (nilotinib): evidence for transport of Tasigna and its fluorescent derivative by ABC drug transporters. Mol Pharm. 2011;8(4):1292–302.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Skoglund K, et al. ABCB1 haplotypes do not influence transport or efficacy of tyrosine kinase inhibitors in vitro. Pharmacogenomics Pers Med. 2013;6:63–72.

    CAS  Google Scholar 

  142. Skoglund K, et al. Single-nucleotide polymorphisms of ABCG2 increase the efficacy of tyrosine kinase inhibitors in the K562 chronic myeloid leukemia cell line. Pharmacogenet Genomics. 2014;24(1):52–61.

    CAS  PubMed  Google Scholar 

  143. Tiwari AK, et al. Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochem Pharmacol. 2009;78(2):153–61.

    CAS  PubMed  Google Scholar 

  144. Wang F, et al. Nilotinib Enhances the efficacy of conventional chemotherapeutic drugs in CD34 + CD38- stem cells and ABC transporter overexpressing leukemia cells. Molecules. 2014;19(3):3356–75.

    PubMed  Google Scholar 

  145. Weisberg E, et al. Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL + leukemias. Blood. 2007;109(5):2112–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. White DL, et al. Imatinib increases the intracellular concentration of nilotinib, which may explain the observed synergy between these drugs. Blood. 2007;109(8):3609–10.

    CAS  PubMed  Google Scholar 

  147. Sen R, et al. The novel BCR-ABL and FLT3 inhibitor ponatinib is a potent inhibitor of the MDR-associated ATP-binding cassette transporter ABCG2. Mol Cancer Ther. 2012;11(9):2033–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Balabanov S, et al. Abcg2 overexpression represents a novel mechanism for acquired resistance to the multi-kinase inhibitor Danusertib in BCR-ABL-positive cells in vitro. PLoS One. 2011;6(4):e19164.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Liu KJ, et al. Saracatinib (AZD0530) is a potent modulator of ABCB1-mediated multidrug resistance in vitro and in vivo. Int J Cancer. 2013;132(1):224–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Kitazaki T, et al. Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer. 2005;49(3):337–43.

    PubMed  Google Scholar 

  151. Elkind NB, et al. Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res. 2005;65(5):1770–7.

    CAS  PubMed  Google Scholar 

  152. Yanase K, et al. Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther. 2004;3(9):1119–25.

    CAS  PubMed  Google Scholar 

  153. Nakamura Y, et al. Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res. 2005;65(4):1541–6.

    CAS  PubMed  Google Scholar 

  154. Stewart CF, et al. Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res. 2004;64(20):7491–9.

    CAS  PubMed  Google Scholar 

  155. Leggas M, et al. Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res. 2006;66(9):4802–7.

    CAS  PubMed  Google Scholar 

  156. Li J, et al. Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther. 2007;6(3):432–8.

    CAS  PubMed  Google Scholar 

  157. Agarwal S, et al. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther. 2010;334(1):147–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Marchetti S, et al. Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice. Mol Cancer Ther. 2008;7(8):2280–7.

    CAS  PubMed  Google Scholar 

  159. Polli JW, et al. The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab Dispos. 2008;36(4):695–701.

    CAS  PubMed  Google Scholar 

  160. Dai CL, et al. Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 2008;68(19):7905–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Shi Z, et al. Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res. 2007;67(22):11012–20.

    CAS  PubMed  Google Scholar 

  162. Mi Y, Lou L. ZD6474 reverses multidrug resistance by directly inhibiting the function of P-glycoprotein. Br J Cancer. 2007;97(7):934–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Jovelet C, et al. Inhibition of P-glycoprotein functionality by vandetanib may reverse cancer cell resistance to doxorubicin. Eur J Pharm Sci. 2012;46(5):484–91.

    CAS  PubMed  Google Scholar 

  164. Zhao XQ, et al. Neratinib reverses ATP-binding cassette B1-mediated chemotherapeutic drug resistance in vitro, in vivo, and ex vivo. Mol Pharmacol. 2012;82(1):47–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Minocha M, et al. Co-administration strategy to enhance brain accumulation of vandetanib by modulating P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp1/Abcg2) mediated efflux with m-TOR inhibitors. Int J Pharm. 2012;434(1–2):306–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Noguchi K, et al. Substrate-dependent bidirectional modulation of P-glycoprotein-mediated drug resistance by erlotinib. Cancer Sci. 2009;100(9):1701–7.

    CAS  PubMed  Google Scholar 

  167. Shi Z, et al. The epidermal growth factor tyrosine kinase inhibitor AG1478 and erlotinib reverse ABCG2-mediated drug resistance. Oncol Rep. 2009;21(2):483–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Hu S, et al. Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res. 2009;15(19):6062–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Lagas JS, et al. Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 2010;9(2):319–26.

    CAS  PubMed  Google Scholar 

  170. Dai CL, et al. Sensitization of ABCG2-overexpressing cells to conventional chemotherapeutic agent by sunitinib was associated with inhibiting the function of ABCG2. Cancer Lett. 2009;279(1):74–83.

    CAS  PubMed  Google Scholar 

  171. Tong XZ, et al. Apatinib (YN968D1) enhances the efficacy of conventional chemotherapeutical drugs in side population cells and ABCB1-overexpressing leukemia cells. Biochem Pharmacol. 2012;83(5):586–97.

    CAS  PubMed  Google Scholar 

  172. Sodani K, et al. Telatinib reverses chemotherapeutic multidrug resistance mediated by ABCG2 efflux transporter in vitro and in vivo. Biochem Pharmacol. 2014;89:52–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Reyner EL, et al. In vitro characterization of axitinib interactions with human efflux and hepatic uptake transporters: implications for disposition and drug interactions. Drug Metab Dispos. 2013;41(8):1575–83.

    CAS  PubMed  Google Scholar 

  174. Bhullar J, et al. The FLT3 inhibitor quizartinib inhibits ABCG2 at pharmacologically relevant concentrations, with implications for both chemosensitization and adverse drug interactions. PLoS One. 2013;8(8):e71266.

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Durmus S, et al. Oral availability and brain penetration of the B-RAFV600E inhibitor vemurafenib can be enhanced by the P-GLYCOprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Mol Pharm. 2012;9(11):3236–45.

    CAS  PubMed  Google Scholar 

  176. Mittapalli RK, et al. Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther. 2012;342(1):33–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Wu CP, et al. Overexpression of ATP-binding cassette transporter ABCG2 as a potential mechanism of acquired resistance to vemurafenib in BRAF(V600E) mutant cancer cells. Biochem Pharmacol. 2013;85(3):325–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Szakacs G, et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell. 2004;6(2):129–37.

    CAS  PubMed  Google Scholar 

  179. Ludwig JA, et al. Selective toxicity of NSC73306 in MDR1-positive cells as a new strategy to circumvent multidrug resistance in cancer. Cancer Res. 2006;66(9):4808–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Turk D, et al. Identification of compounds selectively killing multidrug-resistant cancer cells. Cancer Res. 2009;69(21):8293–301.

    PubMed Central  PubMed  Google Scholar 

  181. Dai H, et al. Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther. 2003;304(3):1085–92.

    CAS  PubMed  Google Scholar 

  182. Breedveld P, et al. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res. 2005;65(7):2577–82.

    CAS  PubMed  Google Scholar 

  183. Bihorel S, et al. Modulation of the brain distribution of imatinib and its metabolites in mice by valspodar, zosuquidar and elacridar. Pharm Res. 2007;24(9):1720–8.

    CAS  PubMed  Google Scholar 

  184. Bihorel S, et al. Influence of breast cancer resistance protein (Abcg2) and p-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec) across the mouse blood–brain barrier. J Neurochem. 2007;102(6):1749–57.

    CAS  PubMed  Google Scholar 

  185. Oostendorp RL, et al. The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest New Drugs. 2009;27(1):31–40.

    CAS  PubMed  Google Scholar 

  186. Zhou L, et al. The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice. Drug Metab Dispos. 2009;37(5):946–55.

    CAS  PubMed  Google Scholar 

  187. Gardner ER, et al. Influence of the dual ABCB1 and ABCG2 inhibitor tariquidar on the disposition of oral imatinib in mice. J Exp Clin Cancer Res. 2009;28:99.

    PubMed Central  PubMed  Google Scholar 

  188. Lagas JS, et al. Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin Cancer Res. 2009;15(7):2344–51.

    CAS  PubMed  Google Scholar 

  189. Chen Y, et al. P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J Pharmacol Exp Ther. 2009;330(3):956–63.

    CAS  PubMed  Google Scholar 

  190. Tang SC, et al. Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) gene dosage on plasma pharmacokinetics and brain accumulation of dasatinib, sorafenib, and sunitinib. J Pharmacol Exp Ther. 2013;346(3):486–94.

    CAS  PubMed  Google Scholar 

  191. Agarwal S, et al. Active efflux of Dasatinib from the brain limits efficacy against murine glioblastoma: broad implications for the clinical use of molecularly targeted agents. Mol Cancer Ther. 2012;11(10):2183–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Kawamura K, et al. In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [(11)C]gefitinib. Nucl Med Biol. 2009;36(3):239–46.

    CAS  PubMed  Google Scholar 

  193. de Vries NA, et al. Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drugs. 2012;30(2):443–9.

    CAS  PubMed  Google Scholar 

  194. Elmeliegy MA, et al. Role of ATP-binding cassette and solute carrier transporters in erlotinib CNS penetration and intracellular accumulation. Clin Cancer Res. 2011;17(1):89–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Polli JW, et al. An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos. 2009;37(2):439–42.

    CAS  PubMed  Google Scholar 

  196. Carcaboso AM, et al. Tyrosine kinase inhibitor gefitinib enhances topotecan penetration of gliomas. Cancer Res. 2010;70(11):4499–508.

    PubMed Central  CAS  PubMed  Google Scholar 

  197. McDowell HP, et al. Imatinib mesylate potentiates topotecan antitumor activity in rhabdomyosarcoma preclinical models. Int J Cancer. 2007;120(5):1141–9.

    CAS  PubMed  Google Scholar 

  198. Gardner ER, et al. Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharmacol Ther. 2006;80(2):192–201.

    CAS  PubMed  Google Scholar 

  199. Petain A, et al. Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res. 2008;14(21):7102–9.

    CAS  PubMed  Google Scholar 

  200. Gurney H, et al. Imatinib disposition and ABCB1 (MDR1, P-glycoprotein) genotype. Clin Pharmacol Ther. 2007;82(1):33–40.

    CAS  PubMed  Google Scholar 

  201. Dulucq S, et al. Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 2008;112(5):2024–7.

    CAS  PubMed  Google Scholar 

  202. Takahashi N, et al. Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet. 2010;55(11):731–7.

    CAS  PubMed  Google Scholar 

  203. Cusatis G, et al. Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst. 2006;98(23):1739–42.

    CAS  PubMed  Google Scholar 

  204. van Erp NP, et al. Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol. 2009;27(26):4406–12.

    PubMed  Google Scholar 

  205. van Erp NP, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009;35(8):692–706.

    PubMed  Google Scholar 

  206. Brozik A, et al. Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opin Drug Metab Toxicol. 2011;7(5):623–42.

    CAS  PubMed  Google Scholar 

  207. Handschin C, Meyer UA. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev. 2003;55(4):649–73.

    CAS  PubMed  Google Scholar 

  208. Chen Y, et al. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol. 2012;83(8):1112–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Borst P, Zelcer N, van Helvoort A. ABC transporters in lipid transport. Biochim Biophys Acta. 2000;1486(1):128–44.

    CAS  PubMed  Google Scholar 

  210. Lewis DF, Modi S, Dickins M. Structure-activity relationship for human cytochrome P450 substrates and inhibitors. Drug Metab Rev. 2002;34(1–2):69–82.

    CAS  PubMed  Google Scholar 

  211. Stanley LA, et al. PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab Rev. 2006;38(3):515–97.

    CAS  PubMed  Google Scholar 

  212. Wallace BD, Redinbo MR. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective. Drug Metab Rev. 2013;45(1):79–100.

    CAS  PubMed  Google Scholar 

  213. Denison MS, et al. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci. 2011;124(1):1–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  214. Dong D, et al. Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling. Drug Metab Rev. 2012;44(2):192–208.

    CAS  PubMed  Google Scholar 

  215. Hou L, et al. Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases. J Biol Chem. 2007;282(32):23264–74.

    CAS  PubMed  Google Scholar 

  216. Tan KP, et al. Aryl hydrocarbon receptor is a transcriptional activator of the human breast cancer resistance protein (BCRP/ABCG2). Mol Pharmacol. 2010;78(2):175–85.

    CAS  PubMed  Google Scholar 

  217. Tompkins LM, et al. A novel xenobiotic responsive element regulated by aryl hydrocarbon receptor is involved in the induction of BCRP/ABCG2 in LS174T cells. Biochem Pharmacol. 2010;80(11):1754–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  218. Xu S, et al. Aryl hydrocarbon receptor and NF-E2-related factor 2 are key regulators of human MRP4 expression. Am J Physiol Gastrointest Liver Physiol. 2010;299(1):G126–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  219. Wang X, et al. Functional regulation of P-glycoprotein at the blood–brain barrier in proton-coupled folate transporter (PCFT) mutant mice. FASEB J. 2013;27(3):1167–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  220. Campos CR, et al. ABC transporter function and regulation at the blood-spinal cord barrier. J Cereb Blood Flow Metab. 2012;32(8):1559–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  221. Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem. 2001;276(18):14581–7.

    CAS  PubMed  Google Scholar 

  222. Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med. 2001;7(5):584–90.

    CAS  PubMed  Google Scholar 

  223. Kullak-Ublick GA, Becker MB. Regulation of drug and bile salt transporters in liver and intestine. Drug Metab Rev. 2003;35(4):305–17.

    CAS  PubMed  Google Scholar 

  224. Burk O, et al. A role for constitutive androstane receptor in the regulation of human intestinal MDR1 expression. Biol Chem. 2005;386(6):503–13.

    CAS  PubMed  Google Scholar 

  225. Kast HR, et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem. 2002;277(4):2908–15.

    CAS  PubMed  Google Scholar 

  226. Lemmen J, Tozakidis IE, Galla HJ. Pregnane X receptor upregulates ABC-transporter Abcg2 and Abcb1 at the blood–brain barrier. Brain Res. 2013;1491:1–13.

    CAS  PubMed  Google Scholar 

  227. Gahir SS, Piquette-Miller M. Gestational and pregnane X receptor-mediated regulation of placental ATP-binding cassette drug transporters in mice. Drug Metab Dispos. 2011;39(3):465–71.

    CAS  PubMed  Google Scholar 

  228. Burger H, et al. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther. 2005;4(7):747–52.

    CAS  PubMed  Google Scholar 

  229. Wang X, Hawkins BT, Miller DS. Aryl hydrocarbon receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood–brain barrier. FASEB J. 2011;25(2):644–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  230. Yoshioka H, et al. Possible aryl hydrocarbon receptor-independent pathway of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced antiproliferative response in human breast cancer cells. Toxicol Lett. 2012;211(3):257–65.

    CAS  PubMed  Google Scholar 

  231. Ohtake F, Fujii-Kuriyama Y, Kato S. AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem Pharmacol. 2009;77(4):474–84.

    CAS  PubMed  Google Scholar 

  232. Marconett CN, et al. Indole-3-carbinol triggers aryl hydrocarbon receptor-dependent estrogen receptor (ER)alpha protein degradation in breast cancer cells disrupting an ERalpha-GATA3 transcriptional cross-regulatory loop. Mol Biol Cell. 2010;21(7):1166–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  233. Chan YY, et al. Expression of aryl hydrocarbon receptor nuclear translocator enhances cisplatin resistance by upregulating MDR1 expression in cancer cells. Mol Pharmacol. 2013;84(4):591–602.

    CAS  PubMed  Google Scholar 

  234. Han Y, Sugiyama Y. Expression and regulation of breast cancer resistance protein and multidrug resistance associated protein 2 in BALB/c mice. Biol Pharm Bull. 2006;29(5):1032–5.

    CAS  PubMed  Google Scholar 

  235. Jennings P, et al. An overview of transcriptional regulation in response to toxicological insult. Arch Toxicol. 2013;87(1):49–72.

    CAS  PubMed  Google Scholar 

  236. Reschly EJ, Krasowski MD. Evolution and function of the NR1I nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr Drug Metab. 2006;7(4):349–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  237. Tachibana S, et al. Involvement of Vitamin D receptor in the intestinal induction of human ABCB1. Drug Metab Dispos. 2009;37(8):1604–10.

    CAS  PubMed  Google Scholar 

  238. Han S, et al. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes. Mol Endocrinol. 2010;24(6):1151–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  239. Pavek P, Smutny T. Nuclear receptors in regulation of biotransformation enzymes and drug transporters in the placental barrier. Drug Metab Rev. 2014;46(1):19–32.

    CAS  PubMed  Google Scholar 

  240. Durk MR, et al. 1alpha,25-Dihydroxyvitamin D3-liganded vitamin D receptor increases expression and transport activity of P-glycoprotein in isolated rat brain capillaries and human and rat brain microvessel endothelial cells. J Neurochem. 2012;123(6):944–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  241. Braun AH, et al. The epidermal growth factor receptor tyrosine kinase inhibitor gefitinib sensitizes colon cancer cells to irinotecan. Anticancer Drugs. 2005;16(10):1099–108.

    CAS  PubMed  Google Scholar 

  242. Chen YJ, et al. Elevated BCRP/ABCG2 expression confers acquired resistance to gefitinib in wild-type EGFR-expressing cells. PLoS One. 2011;6(6):e21428.

    PubMed Central  CAS  PubMed  Google Scholar 

  243. Azzariti A, et al. Prolonged exposure of colon cancer cells to the epidermal growth factor receptor inhibitor gefitinib (Iressa(TM)) and to the antiangiogenic agent ZD6474: cytotoxic and biomolecular effects. World J Gastroenterol. 2006;12(32):5140–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  244. Huang WC, et al. Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. J Biol Chem. 2011;286(23):20558–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  245. Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci. 2013;34(6):340–6.

    CAS  PubMed  Google Scholar 

  246. Ishikawa T, et al. Role of Nrf2 in cancer photodynamic therapy: regulation of human ABC transporter ABCG2. J Pharm Sci. 2013;102(9):3058–69.

    CAS  PubMed  Google Scholar 

  247. Ji L, et al. Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS One. 2013;8(5):e63404.

    PubMed Central  CAS  PubMed  Google Scholar 

  248. Ma Q, He X. Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2. Pharmacol Rev. 2012;64(4):1055–81.

    CAS  PubMed  Google Scholar 

  249. Hayashi H, Sugiyama Y. Bile salt export pump (BSEP/ABCB11): trafficking and sorting disturbances. Curr Mol Pharmacol. 2013;6(2):95–103.

    CAS  PubMed  Google Scholar 

  250. Ferrandiz-Huertas C, Fernandez-Carvajal A, Ferrer-Montiel A. Rab4 interacts with the human P-glycoprotein and modulates its surface expression in multidrug resistant K562 cells. Int J Cancer. 2011;128(1):192–205.

    CAS  PubMed  Google Scholar 

  251. Loo TW, Bartlett MC, Clarke DM. Rescue of folding defects in ABC transporters using pharmacological chaperones. J Bioenerg Biomembr. 2005;37(6):501–7.

    CAS  PubMed  Google Scholar 

  252. Polgar O, et al. Mutational analysis of threonine 402 adjacent to the GXXXG dimerization motif in transmembrane segment 1 of ABCG2. Biochemistry. 2010;49(10):2235–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  253. Natarajan K, et al. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms. Biochem Pharmacol. 2013;85(4):514–24.

    CAS  PubMed  Google Scholar 

  254. Xie Y, et al. The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem. 2008;283(6):3349–56.

    CAS  PubMed  Google Scholar 

  255. Xie Y, et al. Pim-1 kinase protects P-glycoprotein from degradation and enables its glycosylation and cell surface expression. Mol Pharmacol. 2010;78(2):310–8.

    CAS  PubMed  Google Scholar 

  256. Mogi M, et al. Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem. 2003;278(40):39068–75.

    CAS  PubMed  Google Scholar 

  257. Takada T, et al. Regulation of the cell surface expression of human BCRP/ABCG2 by the phosphorylation state of Akt in polarized cells. Drug Metab Dispos. 2005;33(7):905–9.

    CAS  PubMed  Google Scholar 

  258. Bleau AM, et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009;4(3):226–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  259. Aust S, et al. Subcellular localization of the ABCG2 transporter in normal and malignant human gallbladder epithelium. Lab Invest. 2004;84(8):1024–36.

    CAS  PubMed  Google Scholar 

  260. Hu C, et al. Analysis of ABCG2 expression and side population identifies intrinsic drug efflux in the HCC cell line MHCC-97 L and its modulation by Akt signaling. Carcinogenesis. 2008;29(12):2289–97.

    CAS  PubMed  Google Scholar 

  261. Goler-Baron V, Sladkevich I, Assaraf YG. Inhibition of the PI3K-Akt signaling pathway disrupts ABCG2-rich extracellular vesicles and overcomes multidrug resistance in breast cancer cells. Biochem Pharmacol. 2012;83(10):1340–8.

    CAS  PubMed  Google Scholar 

  262. Pawarode A, et al. Differential effects of the immunosuppressive agents cyclosporin A, tacrolimus and sirolimus on drug transport by multidrug resistance proteins. Cancer Chemother Pharmacol. 2007;60(2):179–88.

    CAS  PubMed  Google Scholar 

  263. Hegedus C, et al. PI3-kinase and mTOR inhibitors differently modulate the function of the ABCG2 multidrug transporter. Biochem Biophys Res Commun. 2012;420(4):869–74.

    CAS  PubMed  Google Scholar 

  264. Imai Y, et al. The PI3K/Akt inhibitor LY294002 reverses BCRP-mediated drug resistance without affecting BCRP translocation. Oncol Rep. 2012;27(6):1703–9.

    CAS  PubMed  Google Scholar 

  265. Imai Y, et al. Versatile inhibitory effects of the flavonoid-derived PI3K/Akt inhibitor, LY294002, on ATP-binding cassette transporters that characterize stem cells. Clin Transl Med. 2012;1(1):24.

    PubMed Central  PubMed  Google Scholar 

  266. Tamaki A, et al. The controversial role of ABC transporters in clinical oncology. Essays Biochem. 2011;50(1):209–32.

    CAS  PubMed  Google Scholar 

  267. Amiri-Kordestani L, et al. Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies. Drug Resist Updat. 2012;15(1–2):50–61.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Sarkadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hegedüs, C., Hegedüs, T., Sarkadi, B. (2015). The Role of ABC Multidrug Transporters in Resistance to Targeted Anticancer Kinase Inhibitors. In: Efferth, T. (eds) Resistance to Targeted ABC Transporters in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09801-2_9

Download citation

Publish with us

Policies and ethics