Skip to main content
Log in

Nanoparticles Based on a Hydrophilic Polyester with a Sheddable PEG Coating for Protein Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the effect of polyethylene glycol (PEG) in nanoparticles based on blends of hydroxylated aliphatic polyester, poly(D,L-lactic-co-glycolic-co-hydroxymethyl glycolic acid) (PLGHMGA) and PEG-PLGHMGA block copolymers on their degradation and release behavior.

Methods

Protein-loaded nanoparticles were prepared with blends of varying ratios of PEG-PLGHMGA (molecular weight of PEG 2,000 and 5,000 Da) and PLGHMGA, by a double emulsion method with or without using poly(vinyl alcohol) (PVA) as surfactant. Bovine serum albumin and lysozyme were used as model proteins.

Results

PEGylated particles prepared without PVA had a zeta potential ranging from ~ −3 to ~−35 mV and size ranging from ~200 to ~600 nm that were significantly dependent on the content and type of PEG-block copolymer. The encapsulation efficiency of the two proteins however was very low (<30%) and the particles rapidly released their content in a few days. In contrast, all formulations prepared with PVA showed almost similar particle properties (size: ~250 nm, zeta potential: ~−1 mV), while loading efficiency for both model proteins was rather high (80–90%). Unexpectedly, independent of the type of formulation, the nanoparticles had nearly the same release and degradation characteristics. NMR analysis showed almost a complete removal of PEG in 5 days which explains these marginal differences.

Conclusions

Protein release and particle degradation are not substantially influenced by the content of PEG, likely because of the fast shedding of the PEG blocks. These PEG shedding particles are interesting system for intracellular delivery of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–22.

    Article  PubMed  CAS  Google Scholar 

  2. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. J Control Release. 2008;125:193–209.

    Article  PubMed  CAS  Google Scholar 

  3. Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4(128):128ra39.

    Article  PubMed  Google Scholar 

  4. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B: Biointerfaces. 2000;18:301–13.

    Article  PubMed  CAS  Google Scholar 

  5. Tobio M, Gref R, Sanchez A, Langer R, Alonso MJ. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res. 1998;15:270–5.

    Article  PubMed  CAS  Google Scholar 

  6. Quellec P, Gref R, Dellacherie E, Sommer F, Tran MD, Alonso MJ. Protein encapsulation within poly(ethylene glycol)-coated nanospheres. II. Controlled release properties. J Biomed Mater Res. 1999;47:388–95.

    Article  PubMed  CAS  Google Scholar 

  7. Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res. 2008;25:55–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Parr MJ, Masin D, Cullis PR, Bally MB. Accumulation of liposomal lipid and encapsulated doxorubicin in murine Lewis lung carcinoma: the lack of beneficial effects by coating liposomes with poly(ethylene glycol). J Pharmacol Exp Ther. 1997;280:1319–27.

    PubMed  CAS  Google Scholar 

  9. Lee Y, Koo H, Jin GW, Mo H, Cho MY, Park JY, et al. Poly(ethylene oxide sulfide): new poly(ethylene glycol) derivatives degradable in reductive conditions. Biomacromolecules. 2005;6:24–6.

    Article  PubMed  CAS  Google Scholar 

  10. Silvius JR, Zuckermann MJ. Interbilayer transfer of phospholipid-anchored macromolecules via monomer diffusion. Biochemistry. 1993;32:3153–61.

    Article  PubMed  CAS  Google Scholar 

  11. Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release. 2007;121:3–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Peracchia MT, Gref R, Minamitake Y, Domb A, Lotan N, Langer R. PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: investigation of their drug encapsulation and release characteristics. J Control Release. 1997;46:223–31.

    Article  CAS  Google Scholar 

  13. Dalhaimer P, Engler AJ, Parthasarathy R, Discher DE. Targeted worm micelles. Biomacromolecules. 2004;5:1714–9.

    Article  PubMed  CAS  Google Scholar 

  14. Buske J, Konig C, Bassarab S, Lamprecht A, Muhlau S, Wagner KG. Influence of PEG in PEG-PLGA microspheres on particle properties and protein release. Eur J Pharm Biopharm. 2012;81:57–63.

    Article  PubMed  CAS  Google Scholar 

  15. Zweers ML, Engbers GH, Grijpma DW, Feijen J. In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide). J Control Release. 2004;100:347–56.

    Article  PubMed  CAS  Google Scholar 

  16. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release. 2002;79:123–35.

    Article  PubMed  CAS  Google Scholar 

  17. Alexis F. Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym Int. 2005;54:36–46.

    Article  CAS  Google Scholar 

  18. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm. 2011;415:34–52.

    Article  PubMed  CAS  Google Scholar 

  19. Giteau A, Venier-Julienne MC, Aubert-Pouessel A, Benoit JP. How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm. 2008;350:14–26.

    Article  PubMed  CAS  Google Scholar 

  20. Ye M, Kim S, Park K. Issues in long-term protein delivery using biodegradable microparticles. J Control Release. 2010;146:241–60.

    Article  PubMed  CAS  Google Scholar 

  21. Samadi N, Abbadessa A, Di Stefano A, van Nostrum CF, Vermonden T, Rahimian S, et al. The effect of lauryl capping group on protein release and degradation of poly(d, l-lactic-co-glycolic acid) particles. J Control Release. 2013;172:436–43.

    Article  PubMed  CAS  Google Scholar 

  22. Park TG, Yong Lee H, Sung Nam Y. A new preparation method for protein loaded poly(D, L-lactic-co-glycolic acid) microspheres and protein release mechanism study. J Control Release. 1998;55:181–91.

    Article  PubMed  CAS  Google Scholar 

  23. Sophocleous AM, Desai KG, Mazzara JM, Tong L, Cheng JX, Olsen KF, et al. The nature of peptide interactions with acid end-group PLGAs and facile aqueous-based microencapsulation of therapeutic peptides. J Control Release. 2013;172:662–70.

    Article  PubMed  CAS  Google Scholar 

  24. Ghassemi AH, van Steenbergen MJ, Talsma H, van Nostrum CF, Crommelin DJ, Hennink WE. Hydrophilic polyester microspheres: effect of molecular weight and copolymer composition on release of BSA. Pharm Res. 2010;27:2008–17.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Samadi N, van Nostrum CF, Vermonden T, Amidi M, Hennink WE. Mechanistic studies on the degradation and protein release characteristics of poly(lactic-co-glycolic-co-hydroxymethylglycolic acid) nanospheres. Biomacromolecules. 2013;14:1044–53.

    Article  PubMed  CAS  Google Scholar 

  26. Liu Y, Ghassemi AH, Hennink WE, Schwendeman SP. No acid microclimate pH in poly(D, L –lactide –co-hydroxymethyl glycolide) microspheres during biodegradation. Biomaterials. 2012;33:7584–93.

    Article  PubMed  CAS  Google Scholar 

  27. Ghassemi AH, van Steenbergen MJ, Barendregt A, Talsma H, Kok RJ, van Nostrum CF, et al. Controlled release of octreotide and assessment of peptide acylation from poly(D, L-lactide-co-hydroxymethyl glycolide) compared to PLGA microspheres. Pharm Res. 2012;29:110–20.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv. 2013;2013:374252.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leemhuis M, van Nostrum CF, Kruijtzer JAW, Zhong ZY, ten Breteler MR, Dijkstra PJ, et al. Functionalized poly (alpha-hydroxy acid)s via ring-opening polymerization: toward hydrophilic polyesters with pendant hydroxyl groups. Macromolecules. 2006;39:3500–8.

    Article  CAS  Google Scholar 

  30. Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, et al. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release. 1998;50:31–40.

    Article  PubMed  CAS  Google Scholar 

  31. Jackson JK, Hung T, Letchford K, Burt HM. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Int J Pharm. 2007;342:6–17.

    Article  PubMed  CAS  Google Scholar 

  32. Beletsi A, Leontiadis L, Klepetsanis P, Ithakissios DS, Avgoustakis K. Effect of preparative variables on the properties of poly(dl-lactide-co-glycolide)-methoxypoly(ethyleneglycol) copolymers related to their application in controlled drug delivery. Int J Pharm. 1999;182:187–97.

    Article  PubMed  CAS  Google Scholar 

  33. Beletsi A, Panagi Z, Avgoustakis K. Biodistribution properties of nanoparticles based on mixtures of PLGA with PLGA-PEG diblock copolymers. Int J Pharm. 2005;298:233–41.

    Article  PubMed  CAS  Google Scholar 

  34. Ortega-Vinuesa JL, Martín-Rodríguez A, Hidalgo-Álvarez R. Colloidal stability of polymer colloids with different interfacial properties: mechanisms. J Colloid Interface Sci. 1996;184:259–67.

    Article  PubMed  CAS  Google Scholar 

  35. Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta. 1977;470:185–201.

    Article  PubMed  CAS  Google Scholar 

  36. Blanazs A, Madsen J, Battaglia G, Ryan AJ, Armes SP. Mechanistic insights for block copolymer morphologies: how do worms form vesicles? J Am Chem Soc. 2011;133:16581–7.

    Article  PubMed  CAS  Google Scholar 

  37. Geng Y, Discher DE. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J Am Chem Soc. 2005;127:12780–1.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Scholes PD, Coombes AG, Illum L, Davis SS, Watts JF, Ustariz C, et al. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J Control Release. 1999;59:261–78.

    Article  PubMed  CAS  Google Scholar 

  39. Johnstone TC, Kulak N, Pridgen EM, Farokhzad OC, Langer R, Lippard SJ. Nanoparticle encapsulation of mitaplatin and the effect thereof on in vivo properties. ACS Nano. 2013;7:5675–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Coombes AG, Yeh MK, Lavelle EC, Davis SS. The control of protein release from poly(DL-lactide co-glycolide) microparticles by variation of the external aqueous phase surfactant in the water-in oil-in water method. J Control Release. 1998;52:311–20.

    Article  PubMed  CAS  Google Scholar 

  41. Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82:105–14.

    Article  PubMed  CAS  Google Scholar 

  42. Paillard-Giteau A, Tran VT, Thomas O, Garric X, Coudane J, Marchal S, et al. Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique. Eur J Pharm Biopharm. 2010;75:128–36.

    Article  PubMed  CAS  Google Scholar 

  43. Lee SC, Oh JT, Jang MH, Chung SI. Quantitative analysis of polyvinyl alcohol on the surface of poly(D, L-lactide-co-glycolide) microparticles prepared by solvent evaporation method: effect of particle size and PVA concentration. J Control Release. 1999;59:123–32.

    Article  PubMed  CAS  Google Scholar 

  44. Torche AM, Le Corre P, Albina E, Jestin A, Le Verge R. PLGA microspheres phagocytosis by pig alveolar macrophages: influence of poly(vinyl alcohol) concentration, nature of loaded-protein and copolymer nature. J Drug Target. 2000;7:343–54.

    Article  PubMed  CAS  Google Scholar 

  45. Zielhuis SW, Nijsen JF, Figueiredo R, Feddes B, Vredenberg AM, van het Schip AD, et al. Surface characteristics of holmium-loaded poly(L-lactic acid) microspheres. Biomaterials. 2005;26:925–32.

    Article  PubMed  CAS  Google Scholar 

  46. Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, et al. Polymer degradation and in vitro release of a model protein from poly(D, L-lactide-co-glycolide) nano- and microparticles. J Control Release. 2003;92:173–87.

    Article  PubMed  CAS  Google Scholar 

  47. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161:175–87.

    Article  PubMed  CAS  Google Scholar 

  48. Clapper JD, Skeie JM, Mullins RF, Guymon CA. Development and characterization of photopolymerizable biodegradable materials from PEG-PLA-PEG block macromonomers. Polymer. 2007;48:6554–64.

    Article  CAS  Google Scholar 

  49. Ghassemi AH, van Steenbergen MJ, Talsma H, van Nostrum CF, Jiskoot W, Crommelin DJ, et al. Preparation and characterization of protein loaded microspheres based on a hydroxylated aliphatic polyester, poly(lactic-co-hydroxymethyl glycolic acid). J Control Release. 2009;138:57–63.

    Article  PubMed  CAS  Google Scholar 

  50. Samadi N, Kijanka MM, Oliveira S, Vermonden T, vanden Dikkenberg JB, vanNostrum CF, et al. Nanobody-targeted and RNase-loaded nanoparticle based on a hydrophilic polyester aimed for cancer therapy. In preparation.

  51. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73:121–36.

    Article  PubMed  CAS  Google Scholar 

  52. van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res. 2000;17:1159–67.

    Article  PubMed  Google Scholar 

  53. Blanco D, Alonso MJ. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants. Eur J Pharm Biopharm. 1998;45:285–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim E. Hennink.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(DOCX 38 kb)

Supplementary Fig. 2

(DOCX 23 kb)

Supplementary Fig. 3

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samadi, N., van Steenbergen, M.J., van den Dikkenberg, J.B. et al. Nanoparticles Based on a Hydrophilic Polyester with a Sheddable PEG Coating for Protein Delivery. Pharm Res 31, 2593–2604 (2014). https://doi.org/10.1007/s11095-014-1355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1355-x

KEY WORDS

Navigation