Skip to main content
Log in

Pharmacokinetic Comparison Between the Long-Term Anesthetized, Short-Term Anesthetized and Conscious Rat Models in Nasal Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the pharmacokinetic differences between the common nasal delivery models.

Methods

In three different rat models [long-term anesthetized (with nasal surgery), short-term anesthetized (without nasal surgery) and conscious models], tacrine and loxapine were administered via nasal, intravenous and oral routes, and the plasma pharmacokinetics were compared among different models.

Results

Systemic exposures of both drugs and their metabolites were consistently higher in long-term anesthetized model after all routes of administration in comparison to that of conscious model. Nasal bioavailabilities in long-term anesthetized model (tacrine 83%, loxapine 97%) were much higher than that in conscious model (tacrine 10%, loxapine 46%). Further studies on tacrine and its metabolites demonstrated no significant difference in t1/2 between short-term anesthetized and conscious models after all routes of administration; however, long-term anesthetized model showed significantly longer t1/2. Regarding the pharmacokinetic parameters (Cmax, Tmax, AUC, bioavailability) of tacrine and its metabolites, short-term anesthetized model resembled closer to conscious model than long-term anesthetized model.

Conclusions

Plasma clearances of tacrine, loxapine, and their metabolites were much slower in the long-term anesthetized model of nasal delivery probably due to suppressed hepatic and renal clearances, while the short-term anesthetized model imposed less impact on tacrine pharmacokinetics and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

1-OH-THA:

1-hydroxytacrine

2-OH-THA:

2-hydroxytacrine

4-OH-THA:

4-hydroxytacrine

7-OH-AMOX:

7-hydroxyamoxapine

7-OH-LOX:

7-hydroxyloxapine

8-OH-AMOX:

8-hydroxyamoxapine

8-OH-LOX:

8-hydroxyloxapine

AMOX:

Amoxapine

AUC:

Area under the curve

CLtotal :

Total systemic clearance

Cmax :

Maximum concentration

CYP:

Cytochrome P450

GI:

Gastrointestinal

i.n.:

Intranasal

i.v.:

Intravenous

LOX:

Loxapine

p.o.:

Oral

PK:

Pharmacokinetics

t1/2 :

Elimination half life

THA:

Tacrine

Tmax :

Time to reach maximum concentration

Vd :

Volume of distribution

References

  1. Illum L. Nasal delivery. The use of animal models to predict performance in man. J Drug Target. 1996;3(6):427–42.

    Article  CAS  PubMed  Google Scholar 

  2. Hussain A, Hirai S, Bawarshi R. Nasal absorption of propranolol from different dosage forms by rats and dogs. J Pharm Sci. 1980;69(12):1411–13.

    Article  CAS  PubMed  Google Scholar 

  3. Daugherty AL, Liggitt HD, Mccabe JG, Moore JA, Patton JS. Absorption of recombinant methionyl-human growth hormone (Met-hGH) from rat nasal mucosa. Int J Pharm. 1988;45(3):197–206.

    Article  CAS  Google Scholar 

  4. Schipper NGM, Hermens WAJJ, Romeyn SG, Verhoef J, Merkus FWHM. Nasal absorption of 17-beta-estradiol and progesterone from a dimethyl-cyclodextrin inclusion formulation in rats. Int J Pharm. 1990;64(1):61–6.

    Article  CAS  Google Scholar 

  5. Kao HD, Traboulsi A, Itoh S, Dittert L, Hussain A. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res. 2000;17(8):978–84.

    Article  CAS  PubMed  Google Scholar 

  6. Naguib M, Magboul MMA, Jaroudi R. Clinically significant drug interactions with general anaesthetics—Incidence, mechanisms and management. CNS Drugs. 1997;8(1):51–78.

    Article  CAS  Google Scholar 

  7. Moench PA, Heran CL, Stetsko PI, Mathias NR, Wall DA, Hussain MA, et al. The effect of anesthesia on the pharmacokinetics of sublingually administered verapamil in rabbits. J Pharm Sci. 2003;92(9):1735–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kennedy JM, Van Riji AM. Effects of surgery on the pharmacokinetic parameters of drugs. Clin Pharmacokinet. 1998;35(4):293–312.

    Article  CAS  PubMed  Google Scholar 

  9. Uhing MR, Beno DWA, Jiyamapa-Serna VA, Chen Y, Galinsky RE, Hall SD, et al. The effect of anesthesia and surgery on CYP3A activity in rats. Drug Metab Dispos. 2004;32(11):1325–30.

    Article  CAS  PubMed  Google Scholar 

  10. Yang Z, Huang Y, Gan G, Sawchuk RJ. Microdialysis evaluation of the brain distribution of stavudine following intranasal and intravenous administration to rats. J Pharm Sci. 2005;94(7):1577–88.

    Article  CAS  PubMed  Google Scholar 

  11. Gozes I, Bardea A, Reshef A, Zamostiano R, Zhukovsky S, Rubinraut S, et al. Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide. Proc Natl Acad Sci U S A. 1996;93(1):427–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Mayor SH, Illum L. Investigation of the effect of anaesthesia on nasal absorption of insulin in rats. Int J Pharm. 1997;149(1):123–9.

    Article  CAS  Google Scholar 

  13. Hanson LR, Roeytenberg A, Martinez PM, Coppes VG, Sweet DC, Rao RJ, et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther. 2009;330(3):679–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Tse FLS, Nickerson DF, Aun R. Effect of isoflurane anesthesia on antipyrine pharmacokinetics in the rat. Pharm Res. 1992;9(11):1515–17.

    Article  CAS  PubMed  Google Scholar 

  15. Gantenbein M, Abat C, Attolini L, Pisano P, Emperaire N, Bruguerolle B. Ketamine effects on bupivacaine local anaesthetic activity and pharmacokinetics of bupivacaine in mice. Life Sci. 1997;61(20):2027–33.

    Article  CAS  PubMed  Google Scholar 

  16. Wong YC, Zuo Z. Intranasal delivery-modification of drug metabolism and brain disposition. Pharm Res. 2010;27(7):1208–23.

    Article  CAS  PubMed  Google Scholar 

  17. Wong YC, Qian S, Zuo Z. Regioselective biotransformation of CNS drugs and its clinical impact on adverse drug reactions. Expert Opin Drug Metab Toxicol. 2012;8(7):833–54.

    Article  CAS  PubMed  Google Scholar 

  18. Wong YC, Zuo Z. Preliminary screening of antipsychotic drug candidates for intranasal delivery potentials. 2010 AAPS Annual Meeting and Exposition. New Orleans, LA, USA; 2010, Nov 14–18.

  19. Qian S, Mak M, He L, Ho CY, Han Y, Zuo Z. In vitro anti-antiacetylcholinesterase activities and permeabilities of novel potential anti-Alzheimer’s agents. 9th International Society for the Study of Xenobiotics (ISSX) Meeting. Istanbul, Turkey; 2010, Sep 04-08.

  20. Wang S, Chow MS, Zuo Z. An approach for rapid development of nasal delivery of analgesics–identification of relevant features, in vitro screening and in vivo verification. Int J Pharm. 2011;420(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  21. Midha KK, Rawson MJ, Hubbard JW. The role of metabolites in bioequivalence. Pharm Res. 2004;21(8):1331–44.

    Article  CAS  PubMed  Google Scholar 

  22. Wong YC, Wo SK, Zuo Z. Investigation of the disposition of loxapine, amoxapine and their hydroxylated metabolites in different brain regions, CSF and plasma of rat by LC-MS/MS. J Pharm Biomed Anal. 2012;58:83–93.

    Article  CAS  PubMed  Google Scholar 

  23. Kukan M, Bezek S, Pool WF, Woolf TF. Metabolic disposition of tacrine in primary suspensions of rat hepatocyte and in single-pass perfused liver: in vitro/in vivo comparisons. Xenobiotica. 1994;24(11):1107–17.

    Article  CAS  PubMed  Google Scholar 

  24. Qian S, Wo SK, Zuo Z. Pharmacokinetics and brain dispositions of tacrine and its major bioactive monohydroxylated metabolites in rats. J Pharm Biomed Anal. 2012;61:57–63.

    Article  CAS  PubMed  Google Scholar 

  25. Luo JP, Vashishtha SC, Hawes EM, Mckay G, Midha KK, Fang J. In vitro identification of the human cytochrome p450 enzymes involved in the oxidative metabolism of loxapine. Biopharm Drug Dispos. 2011;32(7):398–407.

    Article  CAS  PubMed  Google Scholar 

  26. Narige T, Mizumura M, Okuizumi N, Matsumoto K, Furukawa Y, Hondo T. Study of the absorption, distribution, metabolism, and excretion of amoxapine in rats. Yakuri Chiryo. 1981;9(5):1885–92.

    CAS  Google Scholar 

  27. Pool WF, Reily MD, Bjorge SM, Woolf TF. Metabolic disposition of the cognition activator tacrine in rats, dogs, and humans. Species comparisons. Drug Metab Dispos. 1997;25(5):590–7.

    CAS  PubMed  Google Scholar 

  28. Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci. 2009;29(20):6734–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lutz JD, Isoherranen N. Prediction of relative in vivo metabolite exposure from in vitro data using two model drugs: dextromethorphan and omeprazole. Drug Metab Dispos. 2012;40(1):159–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Han S, Zhang J, Tang J. Effects of compound ketamine oral solution on gastrointestinal motility in rats. World China J Digestol. 2010;18(23):2405–9.

    CAS  Google Scholar 

  31. Hsu WH. Xylazine-induced delay of small intestinal transit in mice. Eur J Pharmacol. 1982;83(1–2):55–60.

    Article  CAS  PubMed  Google Scholar 

  32. Yuasa H, Matsuda K, Watanabe J. Influence of anesthetic regimens on intestinal absorption in rats. Pharm Res. 1993;10(6):884–8.

    Article  CAS  PubMed  Google Scholar 

  33. Dahan A, Mendelman A, Amsili S, Ezov N, Hoffman A. The effect of general anesthesia on the intestinal lymphatic transport of lipophilic drugs: Comparison between anesthetized and freely moving conscious rat models. Eur J Pharm Sci. 2007;32(4–5):367–74.

    Article  CAS  PubMed  Google Scholar 

  34. van de Kerkhof EG, de Graaf IA, Groothuis GM. In vitro methods to study intestinal drug metabolism. Curr Drug Metab. 2007;8(7):658–75.

    Article  PubMed  Google Scholar 

  35. FDA Guidence. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. In. Rockville, MD, USA; 2005.

  36. Spyker DA, Munzar P, Cassella JV. Pharmacokinetics of loxapine following inhalation of a thermally generated aerosol in healthy volunteers. J Clin Pharmacol. 2010;50(2):169–79.

    Article  CAS  PubMed  Google Scholar 

  37. Hirai S, Yashiki T, Matsuzawa T, Mima H. Absorption of drugs from the nasal mucosa of rat. Int J Pharm. 1981;7(4):317–25.

    Article  CAS  Google Scholar 

  38. Hussain MA, Knabb R, Aungst BJ, Kettner C. Anticoagulant activity of a peptide boronic acid thrombin inhibitor by various routes of administration in rats. Peptides. 1991;12(5):1153–4.

    Article  CAS  PubMed  Google Scholar 

  39. Donovan MD, Flynn GL, Amidon GL. Absorption of polyethylene glycols 600 through 2000: the molecular weight dependence of gastrointestinal and nasal absorption. Pharm Res. 1990;7(8):863–8.

    Article  CAS  PubMed  Google Scholar 

  40. Veilleux-Lemieux D, Beaudry F, Hélie P, Vachon P. Effects of endotoxemia on the pharmacodynamics and pharmacokinetics of ketamine and xylazine anesthesia in Sprague–Dawley rats. Vet Med Res Rep. 2012;3:99–109.

    Google Scholar 

  41. Miller GH. The effects of general anesthesia on the musculat activity of the gastrointestinal tract a study of ether, chloroform, ethylene and nitrous-oxide. J Pharmacol Exp Ther. 1926;27(1):41–59.

    CAS  Google Scholar 

  42. Reynell PC, Spray GH. The effect of ether and pentobarbitone sodium on gastrointestinal function in the intact rat. Br J Pharmacol Chemother. 1957;12(1):104–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Charlton ST, Davis SS, Illum L. Nasal administration of an angiotensin antagonist in the rat model: effect of bioadhesive formulations on the distribution of drugs to the systemic and central nervous systems. Int J Pharm. 2007;338(1–2):94–103.

    Article  CAS  PubMed  Google Scholar 

  44. Meneguz A, Fortuna S, Lorenzini P, Volpe MT. Influence of urethane and ketamine on rat hepatic cytochrome P450 in vivo. Exp Toxicol Pathol. 1999;51(4–5):392–6.

    Article  CAS  PubMed  Google Scholar 

  45. Loch JM, Potter J, Bachmann KA. The influence of anesthetic agents on rat hepatic cytochromes P450 in vivo. Pharmacology. 1995;50(3):146–53.

    Article  CAS  PubMed  Google Scholar 

  46. Rofael HZ, Abdel-Rahman MS. The role of ketamine on plasma cocaine pharmacokinetics in rat. Toxicol Lett. 2002;129(1–2):167–76.

    Article  CAS  PubMed  Google Scholar 

  47. Rofael HZ, Abdell-Rahman MS. Reduction of tissue concentration of cocaine in rat by ketamine. J Toxicol Environ Health A. 2003;66(3):241–51.

    Article  CAS  PubMed  Google Scholar 

  48. Shaw AA, Hall SD, Franklin MR, Galinsky RE. The influence of L-glutamine on the depression of hepatic cytochrome P450 activity in male rats caused by total parenteral nutrition. Drug Metab Dispos. 2002;30(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  49. Lavoie DSG, Pailleux F, Vachon P, Beaudry F. Characterization of xylazine metabolism in rat liver microsomes using liquid chromatography-hybrid triple quadrupole-linear ion trap-mass spectrometry. Biomed Chromatogr. 2013;27(7):882–8.

    Article  CAS  PubMed  Google Scholar 

  50. Spaldin V, Madden S, Adams DA, Edwards RJ, Davies DS, Park BK. Determination of human hepatic cytochrome P4501A2 activity in vitro use of tacrine as an isoenzyme-specific probe. Drug Metab Dispos. 1995;23(9):929–34.

    CAS  PubMed  Google Scholar 

  51. Gelman S. General anesthesia and hepatic circulation. Can J Physiol Pharmacol. 1987;65(8):1762–79.

    Article  CAS  PubMed  Google Scholar 

  52. Picollo C, Serra AJ, Levy RF, Antonio EL, Santos LD, Tucci PJF. Hemodynamic and thermoregulatory effects of xylazine-ketamine mixture persist even after the anesthetic stage in rats. Arq Bras Med Vet Zootec. 2012;64:860–4.

    Article  CAS  Google Scholar 

  53. Rodrigues SF, de Oliveira MA, Martins JO, Sannomiya P, de Cássia TR, Nigro D, et al. Differential effects of chloral hydrate- and ketamine/xylazine-induced anesthesia by the s.c. route. Life Sci. 2006;79(17):1630–7.

    Article  CAS  PubMed  Google Scholar 

  54. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.

    Article  CAS  PubMed  Google Scholar 

  55. Gumbleton M, Nicholls PJ, Taylor G. Differential-effects of anesthetic regimens on gentamicin pharmacokinetics in the rat - a comparison with chronically catheterized conscious animals. Pharm Res. 1990;7(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  56. Petersen JS, Shalmi M, Christensen S, Haugan K, Lomholt N. Comparison of the renal effects of six sedating agents in rats. Physiol Behav. 1996;60(3):759–65.

    Article  CAS  PubMed  Google Scholar 

  57. Sancho AR, Dowell JA, Wolf W. The effects of anesthesia on the biodistribution of drugs in rats: a carboplatin study. Cancer Chemother Pharmacol. 1997;40(6):521–5.

    Article  CAS  PubMed  Google Scholar 

  58. Cooper TB, Kelly RG. GLC analysis of loxapine, amoxapine, and their metabolites in serum and urine. J Pharm Sci. 1979;68(2):216–19.

    Article  CAS  PubMed  Google Scholar 

  59. Qi X, Evans AM, Wang JP, Miners JO, Upton RN, Milne RW. Inhibition of morphine metabolism by ketamine. Drug Metab Dispos. 2010;38(5):728–31.

    Article  CAS  PubMed  Google Scholar 

  60. Kaul S, Dandekar KA, Schilling BE, Barbhaiya RH. Toxicokinetics of 2′,3′-didehydro-3′-deoxythymidine, stavudine (D4T). Drug Metab Dispos. 1999;27(1):1–12.

    CAS  PubMed  Google Scholar 

  61. McNally WP, Pool WF, Sinz MW, Dehart P, Ortwine DF, Huang CC, et al. Distribution of tacrine and metabolites in rat brain and plasma after single- and multiple-dose regimens. Evidence for accumulation of tacrine in brain tissue. Drug Metab Dispos. 1996;24(6):628–33.

    CAS  PubMed  Google Scholar 

  62. Huie K, Reed A, Takahashi L, Cassella J. Characterization of loxapine human metabolism. Drug Metab Rev. 2008;40:210–11.

    Google Scholar 

  63. Thornton-Manning JR, Dahl AR. Metabolic capacity of nasal tissue interspecies comparisons of xenobiotic-metabolizing enzymes. Mutat Res. 1997;380(1–2):43–59.

    Article  CAS  PubMed  Google Scholar 

  64. Heydel JM, Coelho A, Thiebaud N, Legendre A, Le Bon AM, Faure P, et al. Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events. Anat Rec (Hoboken). 2013;296(9):1333–45.

    Article  CAS  Google Scholar 

  65. Minn AL, Pelczar H, Denizot C, Martinet M, Heydel JM, Walther B, et al. Characterization of microsomal cytochrome P450-dependent monooxygenases in the rat olfactory mucosa. Drug Metab Dispos. 2005;33(8):1229–37.

    Article  CAS  PubMed  Google Scholar 

  66. Liu PT, Ioannides C, Shavila J, Symons AM, Parke DV. Effects of ether anaesthesia and fasting on various cytochromes P450 of rat liver and kidney. Biochem Pharmacol. 1993;45(4):871–7.

    Article  CAS  PubMed  Google Scholar 

  67. Mazzola CD, Miron S, Jenkins AJ. Loxapine intoxication: case report and literature review. J Anal Toxicol. 2000;24(7):638–41.

    Article  CAS  PubMed  Google Scholar 

  68. Ferry DG, Caplan NB, Cubeddu LX. Interaction between antidepressants and alpha1-adrenergic receptor antagonists on the binding to alpha1-acid glycoprotein. J Pharm Sci. 1986;75(2):146–9.

    Article  CAS  PubMed  Google Scholar 

  69. Urien S, Bree F, Testa B, Tillement JP. pH-dependency of basic ligand binding to alpha 1-acid glycoprotein (orosomucoid). Biochem J. 1991;280:277–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Telting-Diaz M, Lunte CE. Distribution of tacrine across the blood–brain barrier in awake, freely moving rats using in vivo microdialysis sampling. Pharm Res. 1993;10(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  71. Makela PM, Truman CA, Ford JM, Roberts CJ. Characteristics of plasma protein binding of tacrine hydrochloride: a new drug for Alzheimer’s disease. Eur J Clin Pharmacol. 1994;47(2):151–5.

    Article  CAS  PubMed  Google Scholar 

  72. Wood DM, Ford JM, Roberts CJ. Variability in the plasma protein binding of velnacrine (1-hydroxy tacrine hydrochloride). A potential agent for Alzheimer’s disease. Eur J Clin Pharmacol. 1996;50(1–2):115–19.

    Article  CAS  PubMed  Google Scholar 

  73. Dayton PG, Stiller RL, Cook DR, Perel JM. The binding of ketamine to plasma proteins: emphasis on human plasma. Eur J Clin Pharmacol. 1983;24(6):825–31.

    Article  CAS  PubMed  Google Scholar 

  74. Hijazi Y, Boulieu R. Protein binding of ketamine and its active metabolites to human serum. Eur J Clin Pharmacol. 2002;58(1):37–40.

    Article  CAS  PubMed  Google Scholar 

  75. Wood M. Plasma drug binding: implications for anesthesiologists. Anesth Analg. 1986;65(7):786–804.

    Article  CAS  PubMed  Google Scholar 

  76. Dyer AM, Hinchcliffe M, Watts P, Castile J, Jabbal-Gill I, Nankervis R, et al. Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res. 2002;19(7):998–1008.

    Article  CAS  PubMed  Google Scholar 

  77. Zhao Y, Tao T, Wu J, Pi J, He N, Chai X, et al. Pharmacokinetics of tramadol in rat plasma and cerebrospinal fluid after intranasal administration. J Pharm Pharmacol. 2008;60(9):1149–54.

    Article  CAS  PubMed  Google Scholar 

  78. Liu PT, Kentish PA, Symons AM, Parke DV. The effects of ether anaesthesia on oxidative stress in rats–dose response. Toxicology. 1993;80(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  79. Plate AY, Crankshaw DL, Gallaher DD. The effect of anesthesia by diethyl ether or isoflurane on activity of cytochrome P450 2E1 and P450 reductases in rat liver. Anesth Analg. 2005;101(4):1063–4.

    Article  CAS  PubMed  Google Scholar 

  80. Ida S, Yokota M, Yoshioka H, Takiguchi Y. Single exposure to gasoline or ether reduces cytochrome P-450 activities without affecting UDP-glucuronosyltransferase activity in rat liver. J Occup Health. 2000;42(2):84–5.

    Article  CAS  Google Scholar 

  81. Janssen BJA, De Celle T, Debets JJM, Brouns AE, Callahan MF, Smith TL. Effects of anesthetics on systemic hemodynamics in mice. Am J Physiol Heart Circ Physiol. 2004;287(4):H1618–24.

    Article  CAS  PubMed  Google Scholar 

  82. Chaves AA, Weinstein DM, Bauer JA. Non-invasive echocardiographic studies in mice - influence of anesthetic regimen. Life Sci. 2001;69(2):213–22.

    Article  CAS  PubMed  Google Scholar 

  83. Buitrago S, Martin TE, Tetens-Woodring J, Belicha-Villanueva A, Wilding GE. Safety and efficacy of various combinations of injectable anesthetics in BALB/c mice. J Am Assoc Lab Anim Sci. 2008;47(1):11–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Seyde WC, Longnecker DE. Anesthetic influences on regional hemodynamics in normal and hemorrhaged rats. Anesthesiology. 1984;61(6):686–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments AND Disclosures

Yin Cheong Wong and Shuai Qian made equal contributions to this work. This work was funded by CUHK Direct Grant 4450272 and General Research Fund CUHK 480809. The authors are grateful to Ms. Sophia Yui Kau Fong for her valuable suggestions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, Y.C., Qian, S. & Zuo, Z. Pharmacokinetic Comparison Between the Long-Term Anesthetized, Short-Term Anesthetized and Conscious Rat Models in Nasal Drug Delivery. Pharm Res 31, 2107–2123 (2014). https://doi.org/10.1007/s11095-014-1312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1312-8

KEY WORDS

Navigation