Skip to main content
Log in

Equilibration rate constant, ke0, to determine effect-site concentration for the Masui remimazolam population pharmacokinetic model in general anesthesia patients

  • Special Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

A Correction to this article was published on 14 September 2022

This article has been updated

Abstract

Effect-site concentration is widely used to determine drug dosage in anesthesia practice. To obtain effect-site concentration, a pharmacokinetic model with a corresponding equilibration rate constant between plasma and effect-site, ke0, is necessary. Remimazolam, a novel short-acting benzodiazepine, has been approved as anesthetic/sedative. Recently, a remimazolam pharmacokinetic model has been published using a large dataset including wide range of subject characteristics (416 males and 246 females, age 18–93 years, total body weight 34–149 kg, height 133–204 cm, body mass index 14–61 kg m−2, ASA physical status: I–IV, and Asian, White, American African, and 2 other races). This Masui model can be applicable to various patients, but a pharmacodynamic model including ke0 was not developed simultaneously. A previous article has indicated that the time to peak effect of drug after its bolus should be used to determine ke0 for a pharmacokinetic model without simultaneous development of corresponding pharmacodynamic model. The ke0 value can be calculated using numerical analysis but not algebraic solution. We provide the detail method of the numerical analysis and a tool to have ke0 value easily for the Masui remimazolam PK model. Additionally, we provide a multiple regression model to have ke0 value for the PK model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. Masui K. Remimazolam besilate, a benzodiazepine, has been approved for general anesthesia!! J Anesth. 2020;34:479–82.

    Article  PubMed  Google Scholar 

  2. Masui K, Stöhr T, Pesic M, Tonai T. A population pharmacokinetic model of remimazolam for general anesthesia and consideration of remimazolam dose in clinical practice. J Anesth. 2022;36:493–505.

    Article  PubMed  Google Scholar 

  3. Masui K. How to select a PK/PD model. In: Absalom AR, Mason KP, editors. Total intravenous anesthesia and target controlled infusions a comprehensive global anthology. Cham: Springer International Publishing; 2017. p. 171–87.

    Chapter  Google Scholar 

  4. Wiltshire HR, Kilpatrick GJ, Tilbrook GS, Borkett KM. A placebo- and midazolam-controlled phase I single ascending—dose study evaluating the safety, pharmacokinetics, and pharmacodynamics of remimazolam (CNS 7056): part II. Population pharmacokinetic and pharmacodynamic modeling and simulation. Anesth Analg. 2012;115:284–96.

    Article  CAS  PubMed  Google Scholar 

  5. Schuttler J, Eisenried A, Lerch M, Fechner J, Jeleazcov C, Ihmsen H. Pharmacokinetics and pharmacodynamics of remimazolam (CNS 7056) after continuous infusion in healthy male volunteers: part I. Pharmacokinetics and clinical pharmacodynamics. Anesthesiology. 2020;132:636–51.

    Article  PubMed  Google Scholar 

  6. Zhou J, Curd L, Lohmer LL, Ossig J, Schippers F, Stoehr T, Schmith V. Population pharmacokinetics of remimazolam in procedural sedation with nonhomogeneously mixed arterial and venous concentrations. Clin Transl Sci. 2021;14:326–34.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou J, Leonowens C, Ivaturi VD, Lohmer LL, Curd L, Ossig J, Schippers F, Petersen KU, Stoehr T, Schmith V. Population pharmacokinetic/pharmacodynamic modeling for remimazolam in the induction and maintenance of general anesthesia in healthy subjects and in surgical subjects. J Clin Anesth. 2020;66:109899.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou J, Curd L, Lohmer LRL, Delpratt N, Ossig J, Schippers F, Stoehr T, Schmith VD. A population pharmacodynamic Markov mixed-effects model for determining remimazolam-induced sedation when co-administered with fentanyl in procedural sedation. Clin Transl Sci. 2021;14:1554–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eisenried A, Schüttler J, Lerch M, Ihmsen H, Jeleazcov C. Pharmacokinetics and pharmacodynamics of remimazolam (CNS 7056) after continuous infusion in healthy male volunteers: part II. Pharmacodynamics of electroencephalogram effects. Anesthesiology. 2020;132:652–66.

    Article  CAS  PubMed  Google Scholar 

  10. Minto CF, Schnider TW, Gregg KM, Henthorn TK, Shafer SL. Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology. 2003;99:324–33.

    Article  PubMed  Google Scholar 

  11. Cardano G, Witmer TR. The rules of algebra: (Ars Magna). Mineola: Dover Publications; 2007.

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was funded by the Department of Anesthesiology, Yokohama City University School of Medicine, Japan.

Author information

Authors and Affiliations

Authors

Contributions

KM: this author contributed to the study design, data analysis and interpretation, drafted and revised the article critically for important intellectual content, and approved the submitted version. SH: this author contributed to the data analysis and interpretation, revised the article critically for important intellectual content, and approved the submitted version.

Corresponding author

Correspondence to Kenichi Masui.

Ethics declarations

Conflict of interest

Kenichi Masui was a consultant/advisor for Mundipharma K.K., Tokyo, Japan, and had been awarded a research grant for this study and received payment for delivering domestic lectures from Mundipharma. Additionally, he is an Editor of Journal of Anesthesia, and an Editorial Board of JA Clinical Reports. Satoshi Hagihira received payment for delivering domestic lectures from Mundipharma. Additionally, he is an Associate Editorial Board of Journal of Anesthesia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSM 29 KB)

Appendices

Appendix 1

A PK parameter set of three compartment model using distribution volumes and clearances includes the distribution volume of i th compartment (Vi), elimination clearance (CL), intercompartmental clearance between central and i th compartment (Qi). Using these parameters, three compartment model can be described as the simultaneous differential Equation 5:

$$\begin{array}{l}\left\{\begin{array}{l}\frac{\mathrm{d}{A}_{1}}{\mathrm{d}t}=-\left({k}_{10}+{k}_{12}+{k}_{13}\right){A}_{1}+{k}_{21}{A}_{2}+{k}_{31}{A}_{3}\\ \frac{\mathrm{d}{A}_{2}}{\mathrm{d}t}={k}_{12}{A}_{1}-{k}_{21}{A}_{2}\\ \frac{\mathrm{d}{A}_{3}}{\mathrm{d}t}={k}_{13}{A}_{1}-{k}_{31}{A}_{3}\end{array}\right.\end{array}$$
(5)

where Ai is the drug amount in the i th compartment, t is the time, k10 is the equilibration rate constant, kij is the equilibration rate constant from i th to j th compartment, and rate constants are calculated as follows: k10 = CL/V1, k12 = Q2/V1, k13 = Q3/V1, k21 = Q2/V2, and k31 = Q3/V3. These PK parameters of A, B, C, α, β, and γ in Eq. 2 can be described using Eqs. 6 and 7:

$$\left\{\begin{array}{l}\alpha +\beta +\gamma ={k}_{10}+{k}_{12}+{k}_{13}+{k}_{21}+{k}_{31}\\ \alpha \beta +\beta \gamma +\gamma \alpha =\left({k}_{10}+{k}_{13}\right){k}_{21}+\left({k}_{10}+{k}_{12}\right){k}_{31}+{k}_{21}{k}_{31}\\ \alpha \beta \gamma ={{k}_{10}k}_{21}{k}_{31}\end{array}\right.$$
(6)
$$\left\{\begin{array}{c}A=\frac{\left({k}_{21}-\alpha \right)\left({k}_{31}-\alpha \right)}{\left(\beta -\alpha \right)\left(\gamma -\alpha \right)}\\ B=\frac{\left({k}_{21}-\beta \right)\left({k}_{31}-\beta \right)}{\left(\alpha -\beta \right)\left(\gamma -\beta \right)} \\ C=\frac{\left({k}_{21}-\gamma \right)\left({k}_{31}-\gamma \right)}{\left(\alpha -\gamma \right)\left(\beta -\gamma \right)}\end{array}\right.$$
(7)

The values of −α, −β, and −γ are the solutions of the cubic Equation 8:

$${x}^{3}+{a}_{2}{x}^{2}+{a}_{1}x+{a}_{0}=0$$
(8)

Cardano’s method [11] offers the algebraic solution of Eq. 8. Equation 8 can be converted to Eq. 10 using Eq. 9:

$$x=y-\frac{{a}_{2}}{3}$$
(9)
$$\begin{array}{c}{y}^{3}+px+q=0\end{array}$$
(10)

where \(p={a}_{1}-\frac{{{a}_{2}}^{2}}{3}\) and \(q={a}_{0}-\frac{1}{3}{a}_{1}{a}_{2}+\frac{2}{27}{{a}_{2}}^{3}\).

The solutions of y are calculated as yi in Eq. 11:

$$\begin{array}{c}{y}_{i}=2a\mathrm{cos}\left(\frac{1}{3}\mathrm{arccos}\frac{b}{2a}+\frac{2i\pi }{3}\right)\end{array}$$
(11)

where i = 0, 1, or 2, \(a=\sqrt{-\frac{p}{3}}\), and \(b=-\frac{q}{{a}^{2}}\).

Equations 9 and 11 lead Eq. 12:

$$\begin{array}{c}{x}_{i}=2a\mathrm{cos}\left(\frac{1}{3}\mathrm{arccos}\frac{\mathrm{b}}{2\mathrm{a}}+\frac{2\mathrm{i\pi }}{3}\right)-\frac{{\mathrm{a}}_{2}}{3}\end{array}$$
(12)

where i = 0, 1, or 2.

Finally, α, β, and γ are calculated using Eq. 13:

$$\begin{array}{c}\left\{\begin{array}{c}\alpha =maximum\left\{{x}_{i}\right\}\\ \beta =median\left\{{x}_{i}\right\}\\ \gamma =minimum\left\{{x}_{i}\right\}\end{array}\right.\end{array}$$
(13)

where i = 0, 1, or 2.

Appendix 2

Equation 14 provides approximately ke0 if the numerical analysis (Appendix 1) is impossible to be applied. Before obtaining the following equation, numerical analysis clarified that Eq. 3 had only one ke0 value between 0.15 and 0.26 min−1 (this is the range of ke0 for the Masui PK model for a patient with characteristics within the original study) for each pharmacokinetic parameter set.

$$\begin{array}{l}\begin{array}{l}{k}_{\mathrm{e}0}=-9.06+\mathrm{F}\left(\mathrm{age}\right)+F\left(\mathrm{TBW}\right)+F\left(\mathrm{height}\right)+0.999\cdot F\left(\mathrm{sex}\right)+F\left(\mathrm{ASAPS}\right)\\ -4.50\cdot \mathrm{F}2\left(\mathrm{age}\right)\cdot F2\left(\mathrm{TBW}\right)-4.51\cdot F2\left(\mathrm{age}\right)\cdot F2\left(\mathrm{height}\right)\\ +2.46\cdot \mathrm{F}2\left(\mathrm{age}\right)\cdot F2\left(\mathrm{sex}\right)+3.35\cdot F2\left(\mathrm{age}\right)\cdot F2\left(\mathrm{ASAPS}\right)\\ -12.6\cdot F2\left(\mathrm{TBW}\right)\cdot F2\left(\mathrm{height}\right)+0.394\cdot F2\left(\mathrm{TBW}\right)\cdot F2\left(\mathrm{sex}\right)\\ +2.06\cdot F2\left(\mathrm{TBW}\right)\cdot F2\left(\mathrm{ASAPS}\right)+0.390\cdot F2\left(\mathrm{height}\right)\cdot F2\left(\mathrm{sex}\right)\\ +2.07\cdot F2\left(\mathrm{height}\right)\cdot F2\left(\mathrm{ASAPS}\right)+5.03\cdot F2\left(\mathrm{sex}\right)\cdot F2\left(\mathrm{ASAPS}\right)\\ +99.8\cdot F2\left(\mathrm{age}\right)\cdot F2\left(\mathrm{TBW}\right)\cdot F2\left(\mathrm{height}\right)+5.11\cdot F2\left(\mathrm{TBW}\right)\cdot F2\left(\mathrm{height}\right)\cdot F2\left(\mathrm{sex}\right)\\ -39.4\cdot F2\left(\mathrm{TBW}\right)\cdot F2\left(\mathrm{height}\right)\cdot F2\left(\mathrm{ASAPS}\right)-5.00\cdot F2\left(\mathrm{TBW}\right)\cdot F2\left(\mathrm{sex}\right)\cdot F2\left(\mathrm{ASAPS}\right)\\ -5.04\cdot F2\left(\mathrm{height}\right)\cdot F2\left(\mathrm{sex}\right)\cdot F2\left(\mathrm{ASAPS}\right)\end{array}\end{array}$$
(14)

where

$$\left\{\begin{array}{l}F\left(\mathrm{age}\right)=0.228-2.72\cdot {10}^{-5}\cdot age+2.96\cdot {10}^{-7}\cdot {\left(\mathrm{age}-55\right)}^{2}\\ -4.34\cdot {10}^{-9}\cdot {\left(\mathrm{age}-55\right)}^{3}+5.05\cdot {10}^{-11}\cdot {\left(\mathrm{age}-55\right)}^{4}\\ F\left(\mathrm{TBW}\right)=0.196+3.53\cdot {10}^{-4}\cdot TBW-7.91\cdot {10}^{-7}\cdot {\left(\mathrm{TBW}-90\right)}^{2}\\ F\left(\mathrm{height}\right)=0.148+4.73\cdot {10}^{-4}\cdot height-1.43\cdot {10}^{-6}\cdot {\left(\mathrm{Height}-167.5\right)}^{2}\\ F\left(\mathrm{sex}\right)=0.237-2.16\cdot {10}^{-2}\cdot sex\\ F\left(\mathrm{ASAPS}\right)=0.214+2.41\cdot {10}^{-2}\cdot ASAPS\\ F2\left(\mathrm{age}\right)=F\left(\mathrm{age}\right)-0.227\\ F2\left(\mathrm{TBW}\right)=F\left(\mathrm{TBW}\right)-0.227\\ F2\left(\mathrm{height}\right)=F\left(\mathrm{height}\right)-0.226\\ F2\left(\mathrm{sex}\right)=F\left(\mathrm{sex}\right)-0.226\\ F2\left(\mathrm{ASAPS}\right)=F\left(\mathrm{ASAPS}\right)-0.226\end{array}\right.$$

age (years), TBW total body weight (kg), height (cm), sex: 0 for male and 1 for female, and ASAPS: 0 for ASA-PS I/II and 1 for ASA-PS III/IV.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masui, K., Hagihira, S. Equilibration rate constant, ke0, to determine effect-site concentration for the Masui remimazolam population pharmacokinetic model in general anesthesia patients. J Anesth 36, 757–762 (2022). https://doi.org/10.1007/s00540-022-03099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-022-03099-8

Keywords

Navigation