Skip to main content

Advertisement

Log in

Antimicrobial Drugs Encapsulated in Fibrin Nanoparticles for Treating Microbial Infested Wounds

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

A Correction to this article was published on 19 April 2019

ABSTRACT

Purpose

In vitro evaluation of antibacterial and antifungal drugs encapsulated fibrin nanoparticles to prove their potential prospect of using these nanocomponent for effective treatment of microbial infested wounds.

Methods

Surfactant-free oil-in-water emulsification-diffusion method was adopted to encapsulate 1 mg/ml each of antimicrobial drugs (Ciprofloxacin and Fluconazole) in 4 ml of aqueous fibrinogen suspension and subsequent thrombin mediated cross linking to synthesize drug loaded fibrin nanoparticles.

Results

Ciprofloxacin loaded fibrin nanoparticles (CFNPs) showed size range of 253 ± 6 nm whereas that of Fluconazole loaded fibrin nanoparticles (FFNPs) was 260 ± 10 nm. Physico chemical characterizations revealed the firm integration of antimicrobial drugs within fibrin nanoparticles. Drug release studies performed at physiological pH 7.4 showed a release of 16% ciprofloxacin and 8% of fluconazole while as the release of ciprofloxacin at alkaline pH 8.5, was 48% and that of fluconazole was 37%. The antimicrobial activity evaluations of both drug loaded systems independently showed good antibacterial activity against Escherichia coli (E.coli), Staphylococcus aureus (S. aureus) and antifungal activity against Candida albicans (C. albicans). The in vitro toxicity of the prepared drug loaded nanoparticles were further analyzed using Human dermal fibroblast cells (HDF) and showed adequate cell viability.

Conclusion

The efficacies of both CFNPs and FFNPs for sustained delivery of encapsulated anti microbial drugs were evaluated in vitro suggesting its potential use for treating microbial infested wounds (diabetic foot ulcer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Praveen G, Sreerakha PR, Menon D, Nair SV, Chennazhi KP. Fibrin nanoconstructs: a novel processing method and their use as controlled delivery agents. Nanotechnology. 2012;23(9):095102.

    Article  CAS  PubMed  Google Scholar 

  2. Frank A, Eric P, Linda KM. Factors affecting the clearance and bio distribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Google Scholar 

  3. Lilian EV, Manoor A. Multi-functional polymeric nanoparticle for tumor- targeted drug delivery. Expert Opin Drug Deliv. 2006;3(2):205–16.

    Article  Google Scholar 

  4. Wim HDJ, Paul JAB. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–49.

    Google Scholar 

  5. Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3(8):1894–904.

    Article  CAS  PubMed  Google Scholar 

  6. Breen A, O’brien T, Pandit A. Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue Eng B Rev. 2009;15(2):201–14.

    Article  CAS  Google Scholar 

  7. Nehls V, Herrmann R. The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc Res. 1996;51(3):347–61.

    Article  CAS  PubMed  Google Scholar 

  8. Nehls V, Herrmann R, Huhnken M. Guided migration as novel mechanism of capillary network remodelling is regulated by basic fibroblast growth factor. Histochem Cell Biol. 1998;109(4):319–29.

    Article  CAS  PubMed  Google Scholar 

  9. Paul AJ, Jessamine PW, John WW. Fibrin gels and their clinical and bioengineering applications. J R Soc Interface. 2009;66(30):1–10.

    Google Scholar 

  10. Dresdale A, Rose EA, Jeevavavdam V, Reematsma K, Bowman FO, Malm JR. Preparation of fibrin glue from single-donor fresh- frozen plasma. Surgery. 1985;97(6):750–4.

    CAS  PubMed  Google Scholar 

  11. Mol A, Van LMI, Dam CG, Neuenschwander S, Hoerstrup SP, Baaijens FP, et al. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials. 2005;26(16):3113–21.

    Article  CAS  PubMed  Google Scholar 

  12. Fang H, Peng S, Chen A, Li F, Ren K, Hu N. Biocompatibility studies on fibrin glue cultured with bone marrow mesenchymal stem cells in vitro. J Huazhong Univ Sci Technol Med Sci. 2004;24(3):272–4.

    Article  CAS  PubMed  Google Scholar 

  13. Ho W, Tawil B, Dunn JC, Wu BM. The behavior of human mesenchymal stem cells in 3D fibrin clot: dependence on fibrinogen concentration and clot structure. Tissue Eng. 2006;12(6):1587–95.

    Article  CAS  PubMed  Google Scholar 

  14. Boyce ST, Holder IA, Supp AP, Warden GD, Greenhalgh DG. Delivery and activity of antimicrobial drugs from human fibrin sealant. J Burn Care Rehabil. 1994;15(3):251–5.

    Article  CAS  PubMed  Google Scholar 

  15. Schwarz R, Penk A, Pittrow L. Administration of fluconazole in children below 1 year. Mycoses. 1998;42(1–2):3–16.

    Google Scholar 

  16. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Masterton RG. The new treatment paradigm and the role of carbapenems. Int J Antimicrob Agents. 2009;33(2):105–10.

    Article  CAS  PubMed  Google Scholar 

  18. Dissemond J, Schmid EN, Esser S, Witthoff M, Goos M. Bakterielle kolonisation chronischer wunden. Hautarzt. 2004;55:280–8.

    Article  CAS  PubMed  Google Scholar 

  19. Percival SL, Bowler PG, Russel D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Pornpattananangku D, Hu CM, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010;17(6):585–94.

    Article  CAS  PubMed  Google Scholar 

  21. Driessen M, Ellis JB, Cooper PA, Wainer S, Muwazi F, Hahn D, et al. Fluconazole vs. amphotericin B for the treatment of neonatal fungal septicaemia: a prospective randomised trial. Pediatr Infect Dis J. 1996;15(12):1107–12.

    Article  CAS  PubMed  Google Scholar 

  22. Drusano GL, Standiford HC, Plaisance K, Forrest A, Leslie J, Caldwell J. Absolute oral bioavailability of ciprofloxacin. Antimicrob Agents Chemother. 1986;30(3):444–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lupetti A, Danesi R, Campa M, Del Tacca M, Kelly S. Molecular basis of resistance to azole antifungals. Trends Mol Med. 2002;8(2):76–81.

    Article  CAS  PubMed  Google Scholar 

  24. Long SS, Stevenson DK. Reducing Candida infections during neonatal intensive care: management choices, infection control, and fluconazole prophylaxis. J Pediatr. 2005;147(2):135–41.

    Article  PubMed  Google Scholar 

  25. Paolo M, Ilaria S, Lorenza P, Lidia D, Cristiana M, Gennaro V, et al. A multi-center randomized trial of prophylactic fluconazole in preterm neonates. N Engl J Med. 2007;356(24):2483–95.

    Article  Google Scholar 

  26. Wade KC, Benjamin DK, Kaufman DA, Ward RM, Smith PB, Jayaraman B, et al. Fluconazole dosing for the prevention or treatment of invasive candidiasis in young infants. Pediatr Infect Dis J. 2009;28(8):717–23.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Zhang G, Wang X, Wang Z, Zhang J, Suggs L. A PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Eng. 2006;12(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  28. Seetharaman S, Natesan S, Stowers RS, Mullens C, Baer DG, Suggs LJ, et al. A PEGylated fibrin-based wound dressing with antimicrobial and angiogenic activity. Acta Biomater. 2011;7(7):2787–96.

    Article  CAS  PubMed  Google Scholar 

  29. Suvakanta D, Padala NM, Lilakanta N, Prasanta C. Kinetic Modeling on drug release from controlled drug delivery system. Acta Pol Pharma Drug Res. 2010;67(3):217–23.

    Google Scholar 

  30. Davies BI, Maesen FP. Drug interactions with quinolones. Rev Infect Dis. 1989;11(15):1083–90.

    Article  Google Scholar 

  31. Williams RJ, Attia E, Wickiewicz TL, Hannafin JA. The effect of ciprofloxacin on tendon, paratenon, and capsular fibroblast metabolism. Am J Sports Med. 2000;28(3):364–9.

    PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

B. Maria Alphonsa, P. T. Sudheesh Kumar and G. Praveen contributed equally. The authors are grateful to Department of Biotechnology (DBT), India, for the financial support under a grant (BT/PR6758/NNT/28/620/2012 dated 14-08-2013). Raja Biswas acknowledges Ramalingaswami Fellowship, Department of Biotechnology, India, for the financial support. P T Sudheesh Kumar and G. Praveen acknowledge the Council of Scientific and Industrial Research, India for the Senior Research Fellowship. We are also grateful to Mr. Sajin P. Ravi for his help in SEM analysis. We are grateful to Amrita Centre for Nanosciences and Molecular Medicine for the infrastructure support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. P. Chennazhi or R. Jayakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alphonsa, B.M., Sudheesh Kumar, P.T., Praveen, G. et al. Antimicrobial Drugs Encapsulated in Fibrin Nanoparticles for Treating Microbial Infested Wounds. Pharm Res 31, 1338–1351 (2014). https://doi.org/10.1007/s11095-013-1254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1254-6

KEY WORDS

Navigation