Skip to main content
Log in

Complexation of Cell-Penetrating Peptide–Polymer Conjugates with Polyanions Controls Cells Uptake of HPMA Copolymers and Anti-tumor Activity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Cell penetrating peptides (CPPs) can mediate effective delivery of their associated drugs and drug carriers intracellularly, however their lack of cell specificity remains a major obstacle for their clinical development. We aimed at improving the cell specificity and therapeutic efficacy of HPMA copolymer-octaarginine (R8) conjugate (P-R8) in cells at the tumor micro-environment.

Methods

To avoid premature cell-penetration, the positively charged R8 moieties were masked via electrostatic complexation with various polyanionic molecules (heparin sulfate, hyaluronic acid, fucoidan and poly-glutamic acid). We followed the kinetics of the FITC-labeled P-R8 penetration into endothelial and cancer cells over-time after its complexation in vitro and further tested whether the in situ addition of a stronger polycation can trigger the release of P-R8 from the complexes to resume cell penetration activity. A murine model of B16-F10 lung metastasis was then used as an in vivo model for assessing the therapeutic efficacy of the P-R8, loaded with doxorubicin (P-R8-DOX), after its complexation with PGA.

Results

The intracellular penetration of P-R8-FITC was reversibly inhibited by forming electrostatic interactions with counter polyanions, and can be restored either gradually over time by dissociation from the polyanions, or promptly following the addition of protamine sulfate. Mice injected with B16-F10 cells and treated with P-R8-DOX/PGA complexes, exhibited a significant prolonged survival times when compared with DOX-treated mice or relative to mice treated with either P-R8-DOX or P-DOX alone.

Conclusions

The gradual release of P-R8 from P-R8-DOX/PGA may improve the therapeutic efficacy of water-soluble based nanomedicines for the treatment of solid lung tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AIBN:

2,2’-azobis(isobutyronitrile)

CPPs:

Cell-penetrating peptides

DOX:

Doxorubicin

EPR:

Enhanced permeability and retention

Fi:

Fucoidan

FITC:

Fluorescein-5-isothiocyanate

HA:

Hyaluronic acid

Hep:

Heparin

HMW-Hep:

High molecular weight heparin

HPMA:

N-(2-hydroxypropyl)methacrylamide

LMW-Hep:

Low molecular weight heparin

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolinium bromide

PFA:

Paraformaldehyde

PGA:

Poly-(l)-glutamic acid

PMA:

Poly(methacrylic acid)

R8:

Octaarginine

SEC:

Size-exclusion chromatography

REFERENCES

  1. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60.

    Article  CAS  PubMed  Google Scholar 

  2. Kopecek J, Kopeckova P. HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev. 2010;62:122–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Egusquiaguirre SP, Igartua M, Hernandez RM, Pedraz JL. Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol. 2012;14:83–93.

    Article  CAS  PubMed  Google Scholar 

  4. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.

    Article  CAS  PubMed  Google Scholar 

  5. Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer. 2008;99:392–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Khandare JJ, Minko T. Antibodies and peptides in cancer therapy. Crit Rev Ther Drug Carrier Syst. 2006;23:401–35.

    Article  CAS  PubMed  Google Scholar 

  7. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS  PubMed  Google Scholar 

  8. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  CAS  PubMed  Google Scholar 

  9. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000;60:2497–503.

    CAS  PubMed  Google Scholar 

  10. Brekken C, Bruland OS, de Lange Davies C. Interstitial fluid pressure in human osteosarcoma xenografts: significance of implantation site and the response to intratumoral injection of hyaluronidase. Anticancer Res. 2000;20:3503–12.

    CAS  PubMed  Google Scholar 

  11. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161:175–87.

    Article  CAS  PubMed  Google Scholar 

  12. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2:750–63.

    Article  CAS  PubMed  Google Scholar 

  13. David A. Carbohydrate-based biomedical copolymers for targeted delivery of anticancer drugs. Israel J Chem. 2010;50:204–19.

    Article  CAS  Google Scholar 

  14. Karra N, Benita S. The ligand nanoparticle conjugation approach for targeted cancer therapy. Curr Drug Metab. 2012;13:22–41.

    Article  CAS  PubMed  Google Scholar 

  15. David A, Kopeckova P, Minko T, Rubinstein A, Kopecek J. Design of a multivalent galactoside ligand for selective targeting of HPMA copolymer-doxorubicin conjugates to human colon cancer cells. Eur J Cancer. 2004;40:148–57.

    Article  CAS  PubMed  Google Scholar 

  16. Shamay Y, Paulin D, Ashkenasy G, David A. E-selectin binding peptide-polymer-drug conjugates and their selective cytotoxicity against vascular endothelial cells. Biomaterials. 2009;30:6460–8.

    Article  CAS  PubMed  Google Scholar 

  17. Shamay Y, Paulin D, Ashkenasy G, David A. Multivalent display of quinic acid based ligands for targeting E-selectin expressing cells. J Med Chem. 2009;52:5906–15.

    Article  CAS  PubMed  Google Scholar 

  18. Adar L, Shamay Y, Journo G, David A. Pro-apoptotic peptide-polymer conjugates to induce mitochondrial-dependent cell death. Polym Adv Technol. 2011;22:199–208.

    Article  CAS  Google Scholar 

  19. Kopansky E, Shamay Y, David A. Peptide-directed HPMA copolymer-doxorubicin conjugates as targeted therapeutics for colorectal cancer. J Drug Target. 2011;19:933–43.

    Article  CAS  PubMed  Google Scholar 

  20. Journo-Gershfeld G, Kapp D, Shamay S, Kopeček J, David A. Hyaluronan oligomers-HPMA copolymer conjugates for targeting paclitaxel to CD44-overexpressing ovarian Carcinoma. Pharm Res. 2012;29:1121–33.

    Article  CAS  PubMed  Google Scholar 

  21. Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends Pharmacol Sci. 2000;21:99–103.

    Article  CAS  PubMed  Google Scholar 

  22. Schwarze SR, Dowdy SF. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci. 2000;21:45–8.

    Article  CAS  PubMed  Google Scholar 

  23. Sethuraman VA, Bae YH. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release. 2007;118:216–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kale AA, Torchilin VP. Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates. Bioconjug Chem. 2007;18:363–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A. 2004;101:17867–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Olson ES, Aguilera TA, Jiang T, Ellies LG, Nguyen QT, Wong EH, et al. In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. Integr Biol (Camb). 2009;1:382–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Shamay Y, Adar L, Ashkenasy G, David A. Light induced drug delivery into cancer cells. Biomaterials. 2011;32:1377–86.

    Article  CAS  PubMed  Google Scholar 

  28. Rihova B, Bilej M, Vetvicka V, Ulbrich K, Strohalm J, Kopecek J, et al. Biocompatibility of N-(2-hydroxypropyl) methacrylamide copolymers containing adriamycin. Immunogenicity, and effect on haematopoietic stem cells in bone marrow in vivo and mouse splenocytes and human peripheral blood lymphocytes in vitro. Biomaterials. 1989;10:335–42.

    Article  CAS  PubMed  Google Scholar 

  29. Kopecek J, Bazilova H. Poly[N-(2-hydroxypropyl)methacrylamide] I. Radical polymerization and copolymerization. Eur Polym J. 1973;9:7–14.

    Article  CAS  Google Scholar 

  30. Drobník J, Kopeček J, Labsk J, Rejmanová P, Exner J, Saudek V. Enzymatic cleavage of side chains of synthetic water-soluble polymers. Makromol Chem. 1976;177:2833–48.

    Article  Google Scholar 

  31. Omelyanenko V, Kopeckova P, Gentry C, Kopecek J. Targetable HPMA copolymer-adriamycin conjugates. Recognition, internalization, and subcellular fate. J Control Release. 1998;53:25–37.

    Article  CAS  PubMed  Google Scholar 

  32. Etrych T, Jelinkova M, Rihova B, Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. J Control Release. 2001;73:89–102.

    Article  CAS  PubMed  Google Scholar 

  33. Seymour LW, Ulbrich K, Steyger PS, Brereton M, Subr V, Strohalm J, et al. Tumour tropism and anti-cancer efficacy of polymer-based doxorubicin prodrugs in the treatment of subcutaneous murine B16F10 melanoma. Br J Cancer. 1994;70:636–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kwon YM, Li Y, Naik S, Liang JF, Huang Y, Park YJ, et al. The ATTEMPTS delivery systems for macromolecular drugs. Expert Opin Drug Deliv. 2008;5:1255–66.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported in part by grants from the Israel Science Foundation (ISF) (Grant No. 418/10 to AD) and the Israeli National Nanotechnology Initiative for a Focal Technology Area (FTA) on Nanomedicines for Personalized Theranostics (to AD). GA acknowledges support from the E.J. Safra center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayelet David.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamay, Y., Shpirt, L., Ashkenasy, G. et al. Complexation of Cell-Penetrating Peptide–Polymer Conjugates with Polyanions Controls Cells Uptake of HPMA Copolymers and Anti-tumor Activity. Pharm Res 31, 768–779 (2014). https://doi.org/10.1007/s11095-013-1198-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1198-x

KEY WORDS

Navigation