Skip to main content
Log in

Hyaluronan Oligomers-HPMA Copolymer Conjugates for Targeting Paclitaxel to CD44-Overexpressing Ovarian Carcinoma

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the effect of the size of low molecular weight hyaluronan (LMW-HA) oligomers on the targeting ability of the HA-containing copolymers to the CD44-overexpressing cells for delivering Paclitaxel (PTX) to ovarian cancer.

Methods

LMW-HA oligosaccharides of 4, 6, 8, 10, 12 and 14 sugar residues were attained by digestion of HMW-HA using hyaluronate lyase at different incubation times and then attached to FITC-labeled HPMA copolymer precursor. The binding and uptake of the HA-modified HPMA-copolymer into CD44-expressing cells was studied by flow cytometry and confocal microscopy. PTX was further attached to HPMA-copolymer precursor bearing HA oligosaccharide at the size of 34 monosaccharides, through an acid-sensitive hydrazone linker. The cytotoxicity of the polymer was tested using cell viability assay.

Results

Polymer conjugates bearing HA oligomers at the size of 10 oligosaccharides and above (HA10–14) bind actively and profoundly to CD44-overexpressing ovarian cancer cells (SK-OV-3) and internalize to the greatest extent relative to HA-polymer conjugates of 8 oligomers and below (HA4–8). The HA-modified HPMA-copolymer PTX conjugate (P-(HA)34-PTX) exhibited 50-times higher cytotoxicity towards CD44-overexpressing cells relative to the control, non-targeted, HPMA-copolymer PTX conjugate (P-PTX).

Conclusions

P-(HA)34-PTX was significantly more toxic than the non-targeted P-PTX in cells expressing high levels of CD44

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2AB:

2-amino benzamide

AIBN:

2,2′-azobis(isobutyronitrile)

BSA:

bovine serum albumin

DCC:

N,N’-dicyclohexyl-carbodiimide

DCU:

N,N’-dicyclohexylurea

DMAP:

4-dimethylaminopyridine

DOX:

Doxorubicin

EPR:

enhanced permeability and retention

FITC:

fluorescein-5-isothiocyanate

GlcNAc:

N-acetyl-D-glucosamine

GlcUA:

D-glucuronic acid

HA:

hyaluronic acid hyaluronan

HA-TBA:

hyaluronic acid-tetrabutylammonium bisulfate

HMW-HA:

high molecular weight HA

HPMA:

N-(2-hydroxypropyl)methacrylamide

I:

polydispersity

LEV:

levulinic acid

LMW-HA:

low molecular weight HA

MA-AP:

N-(3-aminopropyl)methacrylamide

MA-AP(Boc):

N-(tert-butyloxycarbonyl-aminopropyl)methacrylamide

MA-AP-FITC:

methacryloyl-aminopropyl-fluorescein-5-isothiocyanate

MA-GG-HZBoc:

methacryloyl-glycylglycine hydrazide-Boc

MA-GG-OH:

methacryloyl-glycylglycine

MA-GG-ONp:

methacryloyl-glycylglycine p-nitrophenyl ester

Mn:

number average molecular weight

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolinium bromide

MW:

molecular weight

Mw:

weight average molecular weight

PFA:

paraformaldehyde

PGA:

Poly(L-glutamic acid)

PTX:

Paclitaxel

RHAMM:

receptor for hyaluronic acid-mediated motility

SEC:

size-exclusion chromatography

References

  1. Bhalla KN. Microtubule-targeted anticancer agents and apoptosis. Oncogene. 2003;22:9075–86.

    Article  PubMed  CAS  Google Scholar 

  2. Gelderblom H, Verweij J, Nooter K, Sparreboom A, Cremophor EL. the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37:1590–8.

    Article  PubMed  CAS  Google Scholar 

  3. Meerum Terwogt JM, ten Bokkel Huinink WW, Schellens JH, Schot M, Mandjes IA, Zurlo MG, et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs. 2001;12:315–23.

    Article  PubMed  CAS  Google Scholar 

  4. Singer JW, Baker B, De Vries P, Kumar A, Shaffer S, Vawter E, et al. Poly-(L)-glutamic acid-paclitaxel (CT-2103) [XYOTAX], a biodegradable polymeric drug conjugate: characterization, preclinical pharmacology, and preliminary clinical data. Adv Exp Med Biol. 2003;519:81–99.

    Article  PubMed  CAS  Google Scholar 

  5. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res. 2006;12:1317–24.

    Article  PubMed  CAS  Google Scholar 

  6. O’Brien ME, Socinski MA, Popovich AY, Bondarenko IN, Tomova A, Bilynsky BT, et al. Randomized phase III trial comparing single-agent paclitaxel Poliglumex (CT-2103, PPX) with single-agent gemcitabine or vinorelbine for the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J Thorac Oncol. 2008;3:728–34.

    Article  PubMed  Google Scholar 

  7. Miele E, Spinelli GP, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine. 2009;4:99–105.

    PubMed  CAS  Google Scholar 

  8. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    PubMed  CAS  Google Scholar 

  9. Omelyanenko V, Gentry C, Kopečková P, Kopeček J. HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. II. Processing in epithelial ovarian carcinoma cells in vitro. Int J Cancer. 1998;75:600–8.

    Article  PubMed  CAS  Google Scholar 

  10. Luo Y, Bernshaw NJ, Lu ZR, Kopeček J, Prestwich GD. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm Res. 2002;19:396–402.

    Article  PubMed  CAS  Google Scholar 

  11. Culty M, Nguyen HA, Underhill CB. The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol. 1992;116:1055–62.

    Article  PubMed  CAS  Google Scholar 

  12. Scott JE. Secondary structures in hyaluronan solutions: chemical and biological implications. Ciba Found Symp. 1989;143:6–15. discussion 15-20, 281-5.

    PubMed  CAS  Google Scholar 

  13. Kogan G, Soltes L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29:17–25.

    Article  PubMed  CAS  Google Scholar 

  14. Schoenfelder M, Einspanier R. Expression of hyaluronan synthases and corresponding hyaluronan receptors is differentially regulated during oocyte maturation in cattle. Biol Reprod. 2003;69:269–77.

    Article  PubMed  CAS  Google Scholar 

  15. Itano N, Atsumi F, Sawai T, Yamada Y, Miyaishi O, Senga T, et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci U S A. 2002;99:3609–14.

    Article  PubMed  CAS  Google Scholar 

  16. Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999;7:79–89.

    Article  PubMed  CAS  Google Scholar 

  17. Rooney P, Wang M, Kumar P, Kumar S. Angiogenic oligosaccharides of hyaluronan enhance the production of collagens by endothelial cells. J Cell Sci. 1993;105(Pt 1):213–8.

    PubMed  CAS  Google Scholar 

  18. Zeng C, Toole BP, Kinney SD, Kuo JW, Stamenkovic I. Inhibition of tumor growth in vivo by hyaluronan oligomers. Int J Cancer. 1998;77:396–401.

    Article  PubMed  CAS  Google Scholar 

  19. Peer D, Margalit R. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal Doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia. 2004;6:343–53.

    Article  PubMed  CAS  Google Scholar 

  20. Eliaz RE, Szóka Jr FC. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res. 2001;61:2592–601.

    PubMed  CAS  Google Scholar 

  21. Asayama S, Nogawa M, Takei Y, Akaike T, Maruyama A. Synthesis of novel polyampholyte comb-type copolymers consisting of a poly(L-lysine) backbone and hyaluronic acid side chains for a DNA carrier. Bioconjug Chem. 1998;9:476–81.

    Article  PubMed  CAS  Google Scholar 

  22. Takei Y, Maruyama A, Ferdous A, Nishimura Y, Kawano S, Ikejima K, et al. Targeted gene delivery to sinusoidal endothelial cells: DNA nanoassociate bearing hyaluronan-glycocalyx. FASEB J. 2004;18:699–701.

    PubMed  CAS  Google Scholar 

  23. Harris EN, Weigel JA, Weigel PH. Endocytic function, glycosaminoglycan specificity, and antibody sensitivity of the recombinant human 190-kDa hyaluronan receptor for endocytosis (HARE). J Biol Chem. 2004;279:36201–9.

    Article  PubMed  CAS  Google Scholar 

  24. Karst NA, Linhardt RJ. Recent chemical and enzymatic approaches to the synthesis of glycosaminoglycan oligosaccharides. Curr Med Chem. 2003;10:1993–2031.

    Article  PubMed  CAS  Google Scholar 

  25. Ruhela D, Riviere K, Szóka FC, Jr. Efficient synthesis of an aldehyde functionalized hyaluronic acid and its application in the preparation of hyaluronan-lipid conjugates. Bioconjug Chem. 2006;17:1360–3.

    Article  PubMed  Google Scholar 

  26. Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem. 1995;230:229–38.

    Article  PubMed  CAS  Google Scholar 

  27. Guile GR, Rudd PM, Wing DR, Prime SB, Dwek RA. A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem. 1996;240:210–26.

    Article  PubMed  CAS  Google Scholar 

  28. Oh EJ, Park K, Choi JS, Joo CK, Hahn SK. Synthesis, characterization, and preliminary assessment of anti-Flt1 peptide-hyaluronate conjugate for the treatment of corneal neovascularization. Biomaterials. 2009;30:6026–34.

    Article  PubMed  CAS  Google Scholar 

  29. Coradini D, Pellizzaro C, Abolafio G, Bosco M, Scarlata I, Cantoni S, et al. Hyaluronic-acid butyric esters as promising antineoplastic agents in human lung carcinoma: a preclinical study. Invest New Drugs. 2004;22:207–17.

    Article  PubMed  CAS  Google Scholar 

  30. Cowman MK, Cozart D, Nakanishi K, Balazs EA. 1H NMR of glycosaminoglycans and hyaluronic acid oligosaccharides in aqueous solution: the amide proton environment. Arch Biochem Biophys. 1984;230:203–12.

    Article  PubMed  CAS  Google Scholar 

  31. Etrych T, Šírová M, Starovoytova L, Říhová B, Ulbrich K. HPMA copolymer conjugates of paclitaxel and docetaxel with pH-controlled drug release. Mol Pharm. 2010;7:1015–26.

    Article  PubMed  CAS  Google Scholar 

  32. Šírová M, Starovoytova L, Říhová J. Aminolyses of monomeric and polymeric 4-nitrophenyl esters of N-methacryloylated amino acids. Makromol Chem. 1977;178:2159–68.

    Article  Google Scholar 

  33. Drobník J, Kopeček J, Labský J, Rejmanová P, Exner J, Saudek V, et al. Enzymatic cleavage of side chains of synthetic water-soluble polymers. Makromol Chem. 1976;177:2833–48.

    Article  Google Scholar 

  34. Ríhová B, Etrych T, Pechar M, Jelínková M, St’astný M, Hovorka O, et al. Doxorubicin bound to a HPMA copolymer carrier through hydrazone bond is effective also in a cancer cell line with a limited content of lysosomes. J Control Release. 2001;74:225–32.

    Article  PubMed  Google Scholar 

  35. Omelyanenko V, Kopečková P, Gentry C, Kopeček J. Targetable HPMA copolymer-adriamycin conjugates. Recognition, internalization, and subcellular fate. J Control Release. 1998;53:25–37.

    Article  PubMed  CAS  Google Scholar 

  36. Kopeček J, Bažilová H. Poly[N-(2-hydroxypropyl)methacrylamide] I. Radical polymerization and copolymerization. Eur Polym J. 1973;9:7–14.

    Article  Google Scholar 

  37. Cesaretti M, Luppi E, Maccari F, Volpi N. A 96-well assay for uronic acid carbazole reaction. Carbohydrate Polymers. 2003;54:59–61.

    Article  CAS  Google Scholar 

  38. Shamay Y, Paulin D, Ashkenasy G, David A. E-selectin binding peptide-polymer-drug conjugates and their selective cytotoxicity against vascular endothelial cells. Biomaterials. 2009;30:6460–8.

    Article  PubMed  CAS  Google Scholar 

  39. Hansen MB NS, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989;119(2):203–10.

    Article  PubMed  Google Scholar 

  40. Luo Y, Ziebell MR, Prestwich GD. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules. 2000;1:208–18.

    Article  PubMed  CAS  Google Scholar 

  41. Lesley J, Hascall VC, Tammi M, Hyman R. Hyaluronan binding by cell surface CD44. J Biol Chem. 2000;275:26967–75.

    PubMed  CAS  Google Scholar 

  42. Teriete P, Banerji S, Noble M, Blundell CD, Wright AJ, Pickford AR, et al. Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. Mol Cell. 2004;13:483–96.

    Article  PubMed  CAS  Google Scholar 

  43. Kasuya Y, Lu ZR, Kopeckova P, Minko T, Tabibi SE, Kopecek J. Synthesis and characterization of HPMA copolymer-aminopropylgeldanamycin conjugates. J Control Release. 2001;74:203–11.

    Article  PubMed  CAS  Google Scholar 

  44. Engblom P, Rantanen V, Kulmala J, Grènman S. Carboplatin–paclitaxel- and carboplatin–docetaxel-induced cytotoxic effect in epithelial ovarian carcinoma in vitro. Cancer. 1999;86:2066–73

    Google Scholar 

Download references

Acknowledgments & Disclosures

This study was supported by a research grant from the US−Israel Binational Science Foundation (BSF) (2007319). We thank Ms. Mazal Rubin for her valuable assistance during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayelet David.

Additional information

Gal Journo-Gershfeld and Dana Kapp contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Journo-Gershfeld, G., Kapp, D., Shamay, Y. et al. Hyaluronan Oligomers-HPMA Copolymer Conjugates for Targeting Paclitaxel to CD44-Overexpressing Ovarian Carcinoma. Pharm Res 29, 1121–1133 (2012). https://doi.org/10.1007/s11095-012-0672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0672-1

Key Words

Navigation