Skip to main content

Nanoparticle Albumin-Bound Paclitaxel (Abraxane®)

  • Chapter
  • First Online:
Albumin in Medicine

Abstract

Albumin has high binding affinity to hydrophobic molecules and is highly accumulated in tumors, making it an ideal carrier to transport water insoluble drugs to tumors. Nanoparticle albumin-bound (nab®) technology is an albumin-based nanoparticle drug delivery platform that preferentially delivers albumin-bound hydrophobic drugs to tumors without using toxic solvents.

Abraxane® (nab-paclitaxel) is the first approved product based on nab technology and the first protein nanotechnology-based chemotherapeutic. The conventional paclitaxel formulation utilizes Cremophor EL (CrEL) and ethanol as solvents, which lead to prolonged systemic exposure, slower tissue distribution, and increased drug toxicity. In contrast, preclinical and clinical studies have demonstrated that nab-paclitaxel displays distinct pharmacokinetics (PK) and biodistribution properties, increased antitumor efficacy, and improved safety profile compared with CrEL-paclitaxel. As a result, nab-paclitaxel has been approved for the treatment of multiple indications in oncology, including metastatic breast cancer, locally advanced or metastatic non-small cell lung cancer (NSCLC), metastatic adenocarcinoma of the pancreas, and advanced gastric cancer (in Japan). The clinical success of nab-paclitaxel demonstrates the great potential of nab technology and albumin-based drug delivery platforms in general through exploitation of the natural properties of albumin and tumor biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez R, Musteanu M, Garcia-Garcia E, Lopez-Casas PP, Megias D, Guerra C, Munoz M, Quijano Y, Cubillo A, Rodriguez-Pascual J, Plaza C, de Vicente E, Prados S, Tabernero S, Barbacid M, Lopez-Rios F, Hidalgo M (2013) Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br J Cancer 109:926–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Androulakis N, Kourousis C, Dimopoulos MA, Samelis G, Kakolyris S, Tsavaris N, Genatas K, Aravantinos G, Papadimitriou C, Karabekios S, Stathopoulos GP, Georgoulias V (1999) Treatment of pancreatic cancer with docetaxel and granulocyte colony-stimulating factor: a multicenter phase II study. J Clin Oncol 17:1779–1785

    CAS  PubMed  Google Scholar 

  • Awasthi N, Zhang C, Schwarz AM, Hinz S, Wang C, Williams NS, Schwarz MA, Schwarz RE (2013) Comparative benefits of Nab-paclitaxel over gemcitabine or polysorbate-based docetaxel in experimental pancreatic cancer. Carcinogenesis 34:2361–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum JL, Savin MA, Edelman G, Pippen JE, Robert NJ, Geister BV, Kirby RL, Clawson A, O’Shaughnessy JA (2007) Phase II study of weekly albumin-bound paclitaxel for patients with metastatic breast cancer heavily pretreated with taxanes. Clin Breast Cancer 7:850–856

    Article  CAS  PubMed  Google Scholar 

  • Brouwer E, Verweij J, De Bruijn P, Loos WJ, Pillay M, Buijs D, Sparreboom A (2000) Measurement of fraction unbound paclitaxel in human plasma. Drug Metab Dispos 28:1141–1145

    CAS  PubMed  Google Scholar 

  • Chen N, Li Y, Ye Y, Palmisano M, Chopra R, Zhou S (2014) Pharmacokinetics and pharmacodynamics of nab-paclitaxel in patients with solid tumors: disposition kinetics and pharmacology distinct from solvent-based paclitaxel. J Clin Pharmacol 54:1097–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen N, Brachmann C, Liu X, Pierce DW, Dey J, Kerwin WS, Li Y, Zhou S, Hou S, Carleton M, Klinghoffer RA, Palmisano M, Chopra R (2015) Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration. Cancer Chemother Pharmacol 76:699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, Rabinowitz JD, Metallo CM, Vander Heiden MG, Bar-Sagi D (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crommelin DJ, Florence AT (2013) Towards more effective advanced drug delivery systems. Int J Pharm 454:496–511

    Article  CAS  PubMed  Google Scholar 

  • Dancey J (2010) mTOR signaling and drug development in cancer. Nat Rev Clin Oncol 7:209–219

    Article  CAS  PubMed  Google Scholar 

  • Desai N (2012a) Albumin drug nanoparticles. In: Kratz F, Senter P, Steinhagen H (eds) Drug delivery in oncology: from basic research to cancer therapy, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1133–1161

    Google Scholar 

  • Desai N (2012b) Challenges in development of nanoparticle-based therapeutics. AAPS J 14:282–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai N (2013) Integration of nab-technology into clinical drug development. In: Bischoff J (ed) Nanotechnologie beim Mammakarzinom- Grundlagen und aktuelle Perspektiven. UNI-MED Verlag AG, Bremen, pp 22–31

    Google Scholar 

  • Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D, Noker P, Yao R, Labao E, Hawkins M, Soon-Shiong P (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Desai NP, Trieu V, Hwang LY, Wu R, Soon-Shiong P, Gradishar WJ (2008) Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status. Anticancer Drugs 19:899–909

    Article  CAS  PubMed  Google Scholar 

  • Dye D, Watkins J (1980) Suspected anaphylactic reaction to Cremophor EL. Br Med J 280:1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank PG, Pavlides S, Lisanti MP (2009) Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res 335:41–47

    Article  CAS  PubMed  Google Scholar 

  • Frese KK, Neesse A, Cook N, Bapiro TE, Lolkema MP, Jodrell DI, Tuveson DA (2012) nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov 2:260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner ER, Dahut WL, Scripture CD, Jones J, Aragon-Ching JB, Desai N, Hawkins MJ, Sparreboom A, Figg WD (2008) Randomized crossover pharmacokinetic study of solvent-based paclitaxel and nab-paclitaxel. Clin Cancer Res 14:4200–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598

    Article  CAS  PubMed  Google Scholar 

  • Gianni L, Kearns CM, Giani A, Capri G, Vigano L, Locatelli A, Bonadonna G, Egorin MJ (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13:180–190

    CAS  PubMed  Google Scholar 

  • Goncharova EA (2013) mTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects. FASEB J 27:1796–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Angulo AM, Meric-Bernstam F, Chawla S, Falchook G, Hong D, Akcakanat A, Chen H, Naing A, Fu S, Wheler J, Moulder S, Helgason T, Li S, Elias I, Desai N, Kurzrock R (2013) Weekly nab-rapamycin in patients with advanced nonhematologic malignancies: final results of a phase i trial. Clin Cancer Res 19:5474–5484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7:1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23:7794–7803

    Article  CAS  PubMed  Google Scholar 

  • Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26:57–64

    Article  CAS  PubMed  Google Scholar 

  • Hawkins MJ, Desai N, Soon-Shiong P (eds) (2003) Rationale, preclinical support, and clinical proof-of-concept for formulating waterinsoluble therapeutics as albumin-stabilized nanoparticles: experience with Paclitaxel. [abstr 442]. American Association for Cancer Research (AACR) Annual Meeting, Anaheim

    Google Scholar 

  • Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:876–885

    Article  CAS  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houghton PJ, Kurmasheva RT, Kolb EA, Gorlick R, Maris JM, Wu J, Tong Z, Arnold MA, Chatterjee M, Williams TM, Smith MA (2015) Initial testing (stage 1) of the tubulin binding agent nanoparticle albumin-bound (nab) paclitaxel (Abraxane((R))) by the Pediatric Preclinical Testing Program (PPTP). Pediatr Blood Cancer 62:1214–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E, Esmaeli B, Ring SE, Bedikian A, Hortobagyi GN, Ellerhorst JA (2002) Phase I and pharmacokinetic study of ABI-007, a cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8:1038–1044

    CAS  PubMed  Google Scholar 

  • Irizarry L, Luu T, McKoy J, Samaras A, Fisher M, Carias E, Raisch D, Calhoun E, Bennett C (2009) Cremophor EL-containing paclitaxel-induced anaphylaxis: a call to action. Community Oncol 6:132–134

    Article  Google Scholar 

  • Jacobs AD, Otero H, Picozzi V (1999) Gemcitabine (G) and Taxotere® (T) in patients with unresectable pancreatic carcinoma. Am Soc Clin Oncol 18:1103A

    Google Scholar 

  • Joerger M, Huitema AD, van den Bongard DH, Schellens JH, Beijnen JH (2006) Quantitative effect of gender, age, liver function, and body size on the population pharmacokinetics of Paclitaxel in patients with solid tumors. Clin Cancer Res 12:2150–2157

    Article  CAS  PubMed  Google Scholar 

  • Joerger M, Huitema AD, Richel DJ, Dittrich C, Pavlidis N, Briasoulis E, Vermorken JB, Strocchi E, Martoni A, Sorio R, Sleeboom HP, Izquierdo MA, Jodrell DI, Calvert H, Boddy AV, Hollema H, Fety R, Van der Vijgh WJ, Hempel G, Chatelut E, Karlsson M, Wilkins J, Tranchand B, Schrijvers AH, Twelves C, Beijnen JH, Schellens JH (2007) Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients: a study by the European organization for research and treatment of cancer-pharmacology and molecular mechanisms group and new drug development group. Clin Cancer Res 13:6410–6418

    Article  CAS  PubMed  Google Scholar 

  • John TA, Vogel SM, Tiruppathi C, Malik AB, Minshall RD (2003) Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol 284:L187–L196

    Article  CAS  PubMed  Google Scholar 

  • Kessel D (1992) Properties of cremophor EL micelles probed by fluorescence. Photochem Photobiol 56:447–451

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita J, Fushida S, Tsukada T, Oyama K, Watanabe T, Shoji M, Okamoto K, Nakanuma S, Sakai S, Makino I, Furukawa H, Hayashi H, Nakamura K, Inokuchi M, Nakagawara H, Miyashita T, Tajima H, Takamura H, Ninomiya I, Fujimura T, Masakazu Y, Hirakawa K, Ohta T (2014) Comparative study of the antitumor activity of Nab-paclitaxel and intraperitoneal solvent-based paclitaxel regarding peritoneal metastasis in gastric cancer. Oncol Rep 32:89–96

    CAS  PubMed  Google Scholar 

  • Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132:171–183

    Article  CAS  PubMed  Google Scholar 

  • Kremer P, Hartung G, Bauder-Wust U, Schrenk HH, Wunder A, Heckl S, Zillmann U, Sinn H (2002) Efficacy and tolerability of an aminopterin-albumin conjugate in tumor-bearing rats. Anticancer Drugs 13:615–623

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74:47–61

    Article  CAS  PubMed  Google Scholar 

  • Merisko-Liversidge E, Sarpotdar P, Bruno J, Hajj S, Wei L, Peltier N, Rake J, Shaw JM, Pugh S, Polin L, Jones J, Corbett T, Cooper E, Liversidge GG (1996) Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm Res 13:272–278

    Article  CAS  PubMed  Google Scholar 

  • Mielke S, Sparreboom A, Mross K (2006) Peripheral neuropathy: a persisting challenge in paclitaxel-based regimes. Eur J Cancer 42:24–30

    Article  CAS  PubMed  Google Scholar 

  • Minshall RD, Tiruppathi C, Vogel SM, Niles WD, Gilchrist A, Hamm HE, Malik AB (2000) Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway. J Cell Biol 150:1057–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols JW, Bae YH (2014) EPR: evidence and fallacy. J Control Release 190:451–464

    Article  CAS  PubMed  Google Scholar 

  • Nyman DW, Campbell KJ, Hersh E, Long K, Richardson K, Trieu V, Desai N, Hawkins MJ, Von Hoff DD (2005) Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Clin Oncol 23:7785–7793

    Article  CAS  PubMed  Google Scholar 

  • Paal K, Muller J, Hegedus L (2001) High affinity binding of paclitaxel to human serum albumin. Eur J Biochem 268:2187–2191

    Article  CAS  PubMed  Google Scholar 

  • Purcell M, Neault JF, Tajmir-Riahi HA (2000) Interaction of taxol with human serum albumin. Biochim Biophys Acta 1478:61–68

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Nishina T, Yasui H, Goto M, Muro K, Tsuji A, Koizumi W, Toh Y, Hara T, Miyata Y (2014) Phase II trial of nanoparticle albumin-bound paclitaxel as second-line chemotherapy for unresectable or recurrent gastric cancer. Cancer Sci 105:812–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer JE (1992) gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol 262:H246–H254

    CAS  PubMed  Google Scholar 

  • Simionescu M, Gafencu A, Antohe F (2002) Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech 57:269–288

    Article  CAS  PubMed  Google Scholar 

  • Socinski MA, Vinnichenko I, Okamoto I, Hon JK, Hirsh V (eds) (2010) Results of a randomized, phase 3 trial of nab-Paclitaxel (nab-P) and Carboplatin (C) compared with Cremophor-based Paclitaxel (P) and carboplatin as first-line therapy in advanced non-small cell lung cancer (NSCLC). In: Proceedings of the 46th American Society of Clinical Oncology Annual Meeting (ASCO); 2010 Jun 4–8; Chicago

    Google Scholar 

  • Socinski MA, Bondarenko I, Karaseva NA, Makhson AM, Vynnychenko I, Okamoto I, Hon JK, Hirsh V, Bhar P, Zhang H, Iglesias JL, Renschler MF (2012) Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J Clin Oncol 30:2055–2062

    Article  CAS  PubMed  Google Scholar 

  • Sparreboom A, Verweij J, van der Burg ME, Loos WJ, Brouwer E, Vigano L, Locatelli A, de Vos AI, Nooter K, Stoter G, Gianni L (1998) Disposition of Cremophor EL in humans limits the potential for modulation of the multidrug resistance phenotype in vivo. Clin Cancer Res 4:1937–1942

    CAS  PubMed  Google Scholar 

  • Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, Beals B, Figg WD, Hawkins M, Desai N (2005) Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin Cancer Res 11:4136–4143

    Article  CAS  PubMed  Google Scholar 

  • Stehle G, Sinn H, Wunder A, Schrenk HH, Stewart JC, Hartung G, Maier-Borst W, Heene DL (1997) Plasma protein (albumin) catabolism by the tumor itself – implications for tumor metabolism and the genesis of cachexia. Crit Rev Oncol Hematol 26:77–100

    Article  CAS  PubMed  Google Scholar 

  • Taxol P (2000) Taxol® (paclitaxel) for injection, BMS insert

    Google Scholar 

  • ten Tije AJ, Verweij J, Loos WJ, Sparreboom A (2003) Pharmacological effects of formulation vehicles: implications for cancer chemotherapy. Clin Pharmacokinet 42:665–685

    Article  PubMed  Google Scholar 

  • Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272:25968–25975

    Article  CAS  PubMed  Google Scholar 

  • Tiruppathi C, Naqvi T, Wu Y, Vogel SM, Minshall RD, Malik AB (2004) Albumin mediates the transcytosis of myeloperoxidase by means of caveolae in endothelial cells. Proc Natl Acad Sci U S A 101:7699–7704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trynda-Lemiesz L (2004) Paclitaxel-HSA interaction. Binding sites on HSA molecule. Bioorg Med Chem 12:3269–3275

    Article  CAS  PubMed  Google Scholar 

  • van Tellingen O, Huizing MT, Panday VR, Schellens JH, Nooijen WJ, Beijnen JH (1999) Cremophor EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patients. Br J Cancer 81:330–335

    Article  PubMed  PubMed Central  Google Scholar 

  • van Zuylen L, Karlsson MO, Verweij J, Brouwer E, de Bruijn P, Nooter K, Stoter G, Sparreboom A (2001) Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother Pharmacol 47:309–318

    Article  PubMed  Google Scholar 

  • Volk LD, Flister MJ, Bivens CM, Stutzman A, Desai N, Trieu V, Ran S (2008) Nab-paclitaxel efficacy in the orthotopic model of human breast cancer is significantly enhanced by concurrent anti–vascular Endothelial Growth Factor A therapy. Neoplasia 10:613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volk LD, Flister MJ, Chihade D, Desai N, Trieu V, Ran S (2011) Synergy of nab-paclitaxel and bevacizumab in eradicating large orthotopic breast tumors and preexisting metastases. Neoplasia 13:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE, Korn RL, Desai N, Trieu V, Iglesias JL, Zhang H, Soon-Shiong P, Shi T, Rajeshkumar NV, Maitra A, Hidalgo M (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 29:4548–4554

    Article  Google Scholar 

  • Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703

    Article  Google Scholar 

  • Wagner LM, Yin H, Eaves D, Currier M, Cripe TP (2014) Preclinical evaluation of nanoparticle albumin-bound paclitaxel for treatment of pediatric bone sarcoma. Pediatr Blood Cancer 61:2096–2098

    Article  CAS  PubMed  Google Scholar 

  • Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL, Baker JR Jr, Van Echo DA, Von Hoff DD, Leyland-Jones B (1990) Hypersensitivity reactions from taxol. J Clin Oncol 8:1263–1268

    CAS  PubMed  Google Scholar 

  • Whitehead RP, Jacobson J, Brown TD, Taylor SA, Weiss GR, Macdonald JS (1997) Phase II trial of paclitaxel and granulocyte colony-stimulating factor in patients with pancreatic carcinoma: a Southwest Oncology Group study. J Clin Oncol 15:2414–2419

    CAS  PubMed  Google Scholar 

  • Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756

    CAS  PubMed  Google Scholar 

  • Zhang C, Awasthi N, Schwarz MA, Hinz S, Schwarz RE (2013a) Superior antitumor activity of nanoparticle albumin-bound paclitaxel in experimental gastric cancer. PLoS One 8:e58037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Marrano P, Kumar S, Leadley M, Elias E, Thorner P, Baruchel S (2013b) Nab-Paclitaxel is an active drug in preclinical model of pediatric solid tumors. Clin Cancer Res 19:5972–5983

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Shihe Hou’s expert editorial and writing assistance of this manuscript is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Desai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Desai, N. (2016). Nanoparticle Albumin-Bound Paclitaxel (Abraxane®). In: Otagiri, M., Chuang, V. (eds) Albumin in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-10-2116-9_6

Download citation

Publish with us

Policies and ethics