Skip to main content

Advertisement

Log in

Dual Physiologically Based Pharmacokinetic Model of Liposomal and Nonliposomal Amphotericin B Disposition

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the biodistribution of amphotericin B (AmB) in mice and rats following administration of liposomal AmB (AmBisome®) using a physiologically-based pharmacokinetic (PBPK) modeling framework and to utilize this approach for predicting AmBisome® pharmacokinetics in human tissues.

Methods

AmB plasma and tissue concentration-time data, following single and multiple intravenous administration of nonliposomal and liposomal AmB to mice and rats, were extracted from literature. The whole-body PBPK model was constructed and incorporated nonliposomal and liposomal subcompartments. Various structural models for individual organs were evaluated. Allometric relationships were incorporated into the model to scale parameters based on species body weight.

Results

A non-Michaelis-Menten mechanism was included into the structure of the liver and spleen liposomal compartments to describe saturable uptake of particles by the reticuloendothelial system. The model successfully described plasma and tissue pharmacokinetics of AmB after administration of AmBisome® to rats and mice.

Conclusions

The dual PBPK model demonstrated good predictive performance by reasonably simulating AmB exposure in human tissues. This modeling framework can be potentially utilized for optimizing AmBisome® therapy in humans and for investigating pathophysiological factors controlling AmB pharmacokinetics and pharmacodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Thornton SJ, Wasan KM. The reformulation of amphotericin B for oral administration to treat systemic fungal infections and visceral leishmaniasis. Expert Opin Drug Deliv. 2009;6(3):271–84.

    Article  CAS  PubMed  Google Scholar 

  2. Thornton SJ, Wasan KM, Piecuch A, Lynd LL, Wasan EK. Barriers to treatment for visceral leishmaniasis in hyperendemic areas: India, Bangladesh, Nepal, Brazil and Sudan. Drug Dev Ind Pharm. 2010;36(11):1312–9.

    Article  CAS  PubMed  Google Scholar 

  3. Adler-Moore J, Proffitt RT. Am Bisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother. 2002;49 Suppl 1:21–30.

    Article  CAS  PubMed  Google Scholar 

  4. Bern C, Adler-Moore J, Berenguer J, Boelaert M, den Boer M, Davidson RN, et al. Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin Infect Dis Off Publ Infect Dis Soc Am. 2006;43(7):917–24.

    Article  CAS  Google Scholar 

  5. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  6. Gershkovich P, Wasan EK, Lin M, Sivak O, Leon CG, Clement JG, et al. Pharmacokinetics and biodistribution of amphotericin B in rats following oral administration in a novel lipid-based formulation. J Antimicrob Chemother. 2009;64(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  7. Davidson EM, Barenholz Y, Cohen R, Haroutiunian S, Kagan L, Ginosar Y. High-dose bupivacaine remotely loaded into multivesicular liposomes demonstrates slow drug release without systemic toxic plasma concentrations after subcutaneous administration in humans. Anesth Analg. 2010;110(4):1018–23.

    Article  CAS  PubMed  Google Scholar 

  8. Adler-Moore JP, Proffitt RT. Amphotericin B lipid preparations: what are the differences? Clinical Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2008;14 Suppl 4:25–36.

    CAS  Google Scholar 

  9. Landsiedel R, Fabian E, Ma-Hock L, Wohlleben W, Wiench K, Oesch F, et al. Toxico-/biokinetics of nanomaterials. Archives of toxicology. 2012.

  10. Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5(4):496–504.

    Article  CAS  PubMed  Google Scholar 

  11. Martinez MN. Factors influencing the use and interpretation of animal models in the development of parenteral drug delivery systems. AAPS J. 2011;13(4):632–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Harashima H, Komatsu S, Kojima S, Yanagi C, Morioka Y, Naito M, et al. Species difference in the disposition of liposomes among mice, rats, and rabbits: allometric relationship and species dependent hepatic uptake mechanism. Pharm Res. 1996;13(7):1049–54.

    Article  CAS  PubMed  Google Scholar 

  13. Gershkovich P, Wasan EK, Sivak O, Li R, Zhu X, Werbovetz KA, et al. Visceral leishmaniasis affects liver and spleen concentrations of amphotericin B following administration to mice. J Antimicrob Chemother. 2009.

  14. Benson JM, Nahata MC. Pharmacokinetics of amphotericin B in children. Antimicrob Agents Chemother. 1989;33(11):1989–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Graybill JR. Is there a correlation between serum antifungal drug concentration and clinical outcome? J Infect. 1994;28 Suppl 1:17–24.

    Article  PubMed  Google Scholar 

  16. Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51:45–73.

    Article  CAS  PubMed  Google Scholar 

  17. Kagan L, Gershkovich P, Wasan KM, Mager DE. Physiologically based pharmacokinetic model of amphotericin B disposition in rats following administration of deoxycholate formulation (Fungizone®): pooled analysis of published data. AAPS J. 2011;13(2):255–64.

    Google Scholar 

  18. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.

    Article  CAS  PubMed  Google Scholar 

  19. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  20. Gerlowski LE, Jain RK. Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci. 1983;72(10):1103–27.

    Article  CAS  PubMed  Google Scholar 

  21. Tsuji A, Yoshikawa T, Nishide K, Minami H, Kimura M, Nakashima E, et al. Physiologically based pharmacokinetic model for beta-lactam antibiotics I: tissue distribution and elimination in rats. J Pharm Sci. 1983;72(11):1239–52.

    Article  CAS  PubMed  Google Scholar 

  22. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. New York: Marcel Dekker, Inc.; 1982.

    Google Scholar 

  23. Robbie G, Chiou WL. Elucidation of human amphotericin B pharmacokinetics: identification of a new potential factor affecting interspecies pharmacokinetic scaling. Pharm Res. 1998;15(10):1630–6.

    Article  CAS  PubMed  Google Scholar 

  24. Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother. 2002;46(3):834–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wang LH, Fielding RM, Smith PC, Guo LS. Comparative tissue distribution and elimination of amphotericin B colloidal dispersion (Amphocil) and Fungizone after repeated dosing in rats. Pharm Res. 1995;12(2):275–83.

    Article  CAS  PubMed  Google Scholar 

  26. Chow HH, Wu Y, Mayersohn M. Pharmacokinetics of amphotericin B in rats as a function of dose following constant-rate intravenous infusion. Biopharm Drug Dispos. 1995;16(6):461–73.

    Article  CAS  PubMed  Google Scholar 

  27. Matsui S, Imai S, Yabuki M, Komuro S. Pharmacokinetics characterization of liposomal amphotericin B: investigation of clearance process and drug interaction potential. Arzneimittelforschung. 2009;59(9):461–70.

    CAS  PubMed  Google Scholar 

  28. Kawai R, Lemaire M, Steimer JL, Bruelisauer A, Niederberger W, Rowland M. Physiologically based pharmacokinetic study on a cyclosporin derivative, SDZ IMM 125. J Pharmacokinet Biopharm. 1994;22(5):327–65.

    Article  CAS  PubMed  Google Scholar 

  29. Harashima H, Kume Y, Yamane C, Kiwada H. Non-michaelis-menten type hepatic-uptake of liposomes in the rat. J Pharm Pharmacol. 1992;44(9):707–12.

    Article  CAS  PubMed  Google Scholar 

  30. Kume Y, Maeda F, Harashima H, Kiwada H. Saturable, non-Michaelis-Menten uptake of liposomes by the reticuloendothelial system. J Pharm Pharmacol. 1991;43(3):162–6.

    Article  CAS  PubMed  Google Scholar 

  31. Tollemar J, Ringden O, Tyden G. Liposomal amphotericin-B (Ambisome) treatment in solid organ and bone-marrow transplant recipients—efficacy and safety evaluation. Clin Transplant. 1990;4(3):167–75.

    Google Scholar 

  32. Ringden O, Meunier F, Tollemar J, Ricci P, Tura S, Kuse E, et al. Efficacy of amphotericin B encapsulated in liposomes (AmBisome) in the treatment of invasive fungal infections in immunocompromised patients. J Antimicrob Chemother. 1991;28(Suppl B):73–82.

    Article  PubMed  Google Scholar 

  33. Hong Y, Ramzan I, McLachlan AJ. Disposition of amphotericin B in the isolated perfused rat liver. J Pharm Pharmacol. 2004;56(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  34. Angra PK, Siddig A, Nettey H, Desai N, Oettinger C, D'Souza MJ. Pharmacokinetic and biodistribution studies of amphotericin B microspheres. J Microencapsul. 2009;26(7):627–34.

    Article  CAS  PubMed  Google Scholar 

  35. Fielding RM, Smith PC, Wang LH, Porter J, Guo LS. Comparative pharmacokinetics of amphotericin B after administration of a novel colloidal delivery system, ABCD, and a conventional formulation to rats. Antimicrob Agents Chemother. 1991;35(6):1208–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Chow DD, Essien HE, Padki MM, Hwang KJ. Targeting small unilamellar liposomes to hepatic parenchymal cells by dose effect. J Pharmacol Exp Ther. 1989;248(2):506–13.

    CAS  PubMed  Google Scholar 

  37. Li M, Al-Jamal KT, Kostarelos K, Reineke J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS nano. 2010;4(11):6303–17.

    Article  CAS  PubMed  Google Scholar 

  38. Harashima H, Iida S, Urakami Y, Tsuchihashi M, Kiwada H. Optimization of antitumor effect of liposomally encapsulated doxorubicin based on simulations by pharmacokinetic/pharmacodynamic modeling. J control Rel Off J Control Rel Soc. 1999;61(1–2):93–106.

    Article  CAS  Google Scholar 

  39. Liu D, Hu Q, Song YK. Liposome clearance from blood: different animal species have different mechanisms. Biochim Biophys Acta. 1995;1240(2):277–84.

    Article  PubMed  Google Scholar 

  40. Caron WP, Clewell H, Dedrick R, Ramanathan RK, Davis WL, Yu N, et al. Allometric scaling of pegylated liposomal anticancer drugs. J Pharmacokinet Pharmacodyn. 2011;38(5):653–69.

    Article  CAS  PubMed  Google Scholar 

  41. van Etten EW, Otte-Lambillion M, van Vianen W, ten Kate MT, Bakker-Woudenberg AJ. Biodistribution of liposomal amphotericin B (AmBisome) and amphotericin B-desoxycholate (Fungizone) in uninfected immunocompetent mice and leucopenic mice infected with Candida albicans. J Antimicrob Chemother. 1995;35(4):509–19.

    Article  PubMed  Google Scholar 

  42. Sivak O, Gershkovich P, Lin M, Wasan EK, Zhao J, Owen D, et al. Tropically stable novel oral lipid formulation of amphotericin B (iCo-010): biodistribution and toxicity in a mouse model. Lipids Health Dis. 2011;10:135.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother. 2002;46(3):828–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Proffitt RT, Satorius A, Chiang SM, Sullivan L, Adler-Moore JP. Pharmacology and toxicology of a liposomal formulation of amphotericin B (AmBisome) in rodents. J Antimicrob Chemother. 1991;28(Suppl B):49–61.

    Article  CAS  PubMed  Google Scholar 

  45. Smith PJ, Olson JA, Constable D, Schwartz J, Proffitt RT, Adler-Moore JP. Effects of dosing regimen on accumulation, retention and prophylactic efficacy of liposomal amphotericin B. J Antimicrob Chemother. 2007;59(5):941–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Kagan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 844 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagan, L., Gershkovich, P., Wasan, K.M. et al. Dual Physiologically Based Pharmacokinetic Model of Liposomal and Nonliposomal Amphotericin B Disposition. Pharm Res 31, 35–45 (2014). https://doi.org/10.1007/s11095-013-1127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1127-z

KEY WORDS

Navigation