Skip to main content

Advertisement

Log in

Model-Based Approach to Describe G-CSF Effects in Carboplatin-Treated Cancer Patients

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Granulocyte colony-stimulating factor (G-CSF) is often used in cancer patients receiving cytotoxic drugs to prevent or reduce high grade neutropenia. We propose a pharmacokinetic/pharmacodynamic model to describe myelotoxicity in both G-CSF treated and non-treated patients that shall increase our understanding of G-CSF effects.

Methods

The model was built from absolute neutrophil counts (ANC) obtained in 375 carboplatin-treated patients, 47 of whom received G-CSF. It includes some prior information on G-CSF taken from the literature. Simulations were performed to understand differences in G-CSF effects and explore the impact of G-CSF formulation.

Results

Our model well described the data in all patients. Model simulations showed that G-CSF was not as beneficial as expected in some patients. Furthermore, a longer and stronger effect was observed for the pegylated formulation in comparison with the daily standard formulation even if the latter was given for 11 consecutive days.

Conclusions

The proposed model allows a mechanistic interpretation of G-CSF effects on ANC and raises the question of a systematic beneficial effect of G-CSF treatment. Other studies are needed to confirm these findings and help identifying patients for whom G-CSF is beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Abs 1 :

Absorption compartment for filgrastim/lenograstim

Abs 2 :

Absorption compartment for pegfilgrastim

ANC :

Absolute neutrophil count

Base :

Baseline level of absolute neutrophil count

C carbo :

Ultrafiltrable circulating (plasma) concentration of carboplatin

C u :

Free circulating concentration controlling G-CSF effects on bone marrow, calculated as the sum of non-pegylated and pegylated G-CSF free circulating (serum) concentrations

Circ :

Circulating mature neutrophil count (=ANC)

E max 1 :

Maximal effect of non-pegylated or pegylated G-CSF on proliferation

E max 2 :

Maximal effect of non-pegylated or pegylated G-CSF on maturation

EC 50 1 :

Value of Cu eliciting 50% of the maximal effect on proliferation

EC 50 2 :

Value of Cu eliciting 50% of the maximal effect on maturation

F1(F2) :

Absolute bioavailability of filgrastim/lenograstim(pegfilgrastim) after subcutaneous administration (which, in the model, is taking into account via the apparent volume of distribution)

G-CSF :

Granulocyte colony-stimulating factor

k :

Transit rate constant between compartments of granulopoiesis (function of Cu) \( \left(k={k}_{tr}\times \left(1+\frac{E_{\max }2\times {C}_u}{E{C}_{50}2+{C}_u}\right)\right) \)

k a 1(2) :

Absorption rate constant for filgrastim/lenograstim(pegfilgrastim)

k circ :

Rate constant of elimination of neutrophils from the systemic blood circulation

K D :

Dissociation constant of RC complex ( = k off /k on )

k el 1 :

Rate constant for the linear, non-specific elimination of endogenous G-CSF and filgrastim/lenograstim

kel2:

Rate constant for the linear, non-specific elimination of pegfilgrastim

k GCSF :

Rate constant of endogenous G-CSF production

k int :

Rate constant for non-pegylated or pegylated G-CSF elimination after binding to receptors and internalization

k prol :

Proliferation rate constant

k tr :

“Virtual” transit rate constant when Cu = 0 (cf. k)

MTT :

Mean transit time for maturing precursors in bone marrow \( \left( MTT=4/{k}_{tr}\times \left(1+\frac{E_{\max }2\times {C}_u}{E{C}_{50}2+{C}_u}\right)\right) \)

PK :

Pharmacokinetic(s)

PK/PD :

Pharmacokinetic(s)/pharmacodynamic(s)

Prol :

Stem cell and progenitor cell count (i.e. proliferative cells) in bone marrow

R :

Concentration in G-CSF receptors present on circulating neutrophils

RC :

Concentration in bound G-CSF complex (pegylated and non-pegylated G-CSF)

R max :

Maximal amount of receptors involved in nonlinear, specific clearance of pegylated and on-pegylated G-CSF (=R + RC)

RSE :

Relative standard error

Slope :

Sensitivity to carboplatin myelotoxicity

Transit 1,2,3 :

Maturating granulocyte precursor count in transit compartments 1, 2 and 3, respectively

VD a 1(2) :

Apparent volume of distribution of G-CSF (pegylated G-CSF) after subcutaneous administration of filgrastim/lenograstim (pegfilgrastim) (VD1(2)/F1(2))

ξ :

Proportionality constant for the amount of G-CSF receptors per cell

REFERENCES

  1. Cameron D. Management of chemotherapy-associated febrile neutropenia. Br J Cancer. 2009;101 suppl 1:S18–22.

    Article  PubMed  CAS  Google Scholar 

  2. Segal BH, Freifeld AG, Baden LR, Brown AE, Casper C, Dubberke E, et al. Prevention and treatment of cancer-related infections. J Natl Compr Cancer Netw. 2008;6:122–74.

    Google Scholar 

  3. Kelly S, Wheatley D. Prevention of febrile neutropenia: use of granulocyte colony-stimulating factors. Br J Cancer. 2009;101 suppl 1:S6–S10.

    Article  PubMed  CAS  Google Scholar 

  4. Aapro M, Crawford J, Kamioner D. Prophylaxis of chemotherapy-induced febrile neutropenia with granulocyte colony-stimulating factors: where are we now? Support Care Cancer. 2010;18:529–41.

    Article  PubMed  Google Scholar 

  5. Cooper KL, Madan J, Whyte S, Stevenson MD, Akehurst RL. Granulocyte colony-stimulating factors for febrile neutropenia prophylaxis following chemotherapy: systematic review and meta-analysis. BMC Cancer. 2011;11:404.

    Article  PubMed  CAS  Google Scholar 

  6. Lord BI, Bronchud MH, Owens S, Chang J, Howell A, Souza L, et al. The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc Natl Acad Sci U S A. 1989;86:9499–503.

    Article  PubMed  CAS  Google Scholar 

  7. Price TH, Chatta GS, Dale DC. Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood. 1996;88:335–40.

    PubMed  CAS  Google Scholar 

  8. Aapro MS, Bohlius J, Cameron DA, Dal Lago L, Donnelly JP, Kearney N, et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer. 2011;47:8–32.

    Article  PubMed  CAS  Google Scholar 

  9. Crawford J, Caserta C, Roila F. Hematopoietic growth factors: ESMO recommendations for the applications. Ann Oncol. 2009;20 Suppl 4:162–5.

    PubMed  Google Scholar 

  10. Tan H, Tomic K, Hurley D, Daniel G, Barron R, Malin J. Comparative effectiveness of colony-stimulating factors for febrile neutropenia: a retrospective study. Curr Med Res Opin. 2011;27:79–86.

    Article  PubMed  Google Scholar 

  11. Weycker D, Malin J, Barron R, Edelsberg J, Kartashov A, Oster G. Comparative effectiveness of filgrastim, pegfilgrastim, and sargramostim as prophylaxis against hospitalization for neutropenic complications in patients with cancer receiving chemotherapy. Am J Clin Oncol. 2012;35:267–74.

    Article  PubMed  Google Scholar 

  12. Yang BB, Lum PK, Hayashi MM, Roskos LK. Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci. 2004;93:1367–73.

    Article  PubMed  CAS  Google Scholar 

  13. Yang BB, Kido A. Pharmacokinetics and pharmacodynamics of pegfilgrastim. Clin Pharmacokinet. 2011;50:295–306.

    Article  PubMed  CAS  Google Scholar 

  14. Friberg LE, Karlsson MO. Mechanistic models for myelosuppression. Investig New Drugs. 2003;21:183–94.

    Article  CAS  Google Scholar 

  15. Shochat E, Rom-Kedar V, Segel LA. G-CSF control of neutrophils dynamics in the blood. Bull Math Biol. 2007;69:2299–338.

    Article  PubMed  CAS  Google Scholar 

  16. Testart-Paillet D, Girard P, You B, Freyer G, Pobel C, Tranchand B. Contribution of modelling chemotherapy-induced hematological toxicity for clinical practice. Crit Rev Oncol Hematol. 2007;63:1–11.

    Article  PubMed  Google Scholar 

  17. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol. 2002;20:4713–21.

    Article  PubMed  Google Scholar 

  18. Quartino AL, Friberg LE, Karlsson MO. A simultaneous analysis of the time-course of leukocytes and neutrophils following docetaxel administration using a semi-mechanistic myelosuppression model. Investig New Drugs. 2012;30:833–45.

    Article  CAS  Google Scholar 

  19. Sandstrom M, Lindman H, Nygren P, Johansson M, Bergh J, Karlsson MO. Population analysis of the pharmacokinetics and the haematological toxicity of the fluorouracil-epirubicin-cyclophosphamide regimen in breast cancer patients. Cancer Chemother Pharmacol. 2006;58:143–56.

    Article  PubMed  CAS  Google Scholar 

  20. Ramon-Lopez A, Nalda-Molina R, Valenzuela B, Perez-Ruixo JJ. Semi-mechanistic model for neutropenia after high dose of chemotherapy in breast cancer patients. Pharm Res. 2009;26:1952–62.

    Article  PubMed  CAS  Google Scholar 

  21. Zandvliet AS, Schellens JH, Copalu W, Beijnen JH, Huitema AD. Covariate-based dose individualization of the cytotoxic drug indisulam to reduce the risk of severe myelosuppression. J Pharmacokinet Pharmacodyn. 2009;36:39–62.

    Article  PubMed  CAS  Google Scholar 

  22. Sugiura M, Yamamoto K, Sawada Y, Iga T. Pharmacokinetic/pharmacodynamic analysis of neutrophil proliferation induced by recombinant granulocyte colony-stimulating factor (rhG-CSF): comparison between intravenous and subcutaneous administration. Biol Pharm Bull. 1997;20:684–9.

    Article  PubMed  CAS  Google Scholar 

  23. Hayashi N, Kinoshita H, Yukawa E, Higuchi S. Pharmacokinetic and pharmacodynamic analysis of subcutaneous recombinant human granulocyte colony stimulating factor (lenograstim) administration. J Clin Pharmacol. 1999;39:583–92.

    Article  PubMed  CAS  Google Scholar 

  24. Wang B, Ludden TM, Cheung EN, Schwab GG, Roskos LK. Population pharmacokinetic-pharmacodynamic modeling of filgrastim (r-metHuG-CSF) in healthy volunteers. J Pharmacokinet Pharmacodyn. 2001;28:321–42.

    Article  PubMed  CAS  Google Scholar 

  25. Engel C, Scholz M, Loeffler M. A computational model of human granulopoiesis to simulate the hematotoxic effects of multicycle polychemotherapy. Blood. 2004;104:2323–31.

    Article  PubMed  CAS  Google Scholar 

  26. Sugiura M, Ohno Y, Yamada Y, Suzuki H, Iga T. Pharmacokinetic/pharmacodynamic analysis of neutrophil proliferation induced by rhG-CSF in patients receiving antineoplastic drugs. Yakugaku Zasshi. 2004;124:599–604.

    Article  PubMed  CAS  Google Scholar 

  27. Scholz M, Engel C, Loeffler M. Modelling human granulopoiesis under poly-chemotherapy with G-CSF support. J Math Biol. 2005;50:397–439.

    Article  PubMed  CAS  Google Scholar 

  28. Vainstein V, Ginosar Y, Shoham M, Ranmar DO, Ianovski A, Agur Z. The complex effect of granulocyte colony-stimulating factor on human granulopoiesis analyzed by a new physiologically-based mathematical model. J Theor Biol. 2005;234:311–27.

    Article  PubMed  CAS  Google Scholar 

  29. Roskos LK, Lum P, Lockbaum P, Schwab G, Yang BB. Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol. 2006;46:747–57.

    Article  PubMed  CAS  Google Scholar 

  30. Shochat E, Rom-Kedar V. Novel strategies for granulocyte colony-stimulating factor treatment of severe prolonged neutropenia suggested by mathematical modeling. Clin Cancer Res. 2008;14:6354–63.

    Article  PubMed  CAS  Google Scholar 

  31. Foley C, Mackey MC. Mathematical model for G-CSF administration after chemotherapy. J Theor Biol. 2009;257:27–44.

    Article  PubMed  CAS  Google Scholar 

  32. Krzyzanski W, Wiczling P, Lowe P, Pigeolet E, Fink M, Berghout A, et al. Population modeling of filgrastim PK-PD in healthy adults following intravenous and subcutaneous administrations. J Clin Pharmacol. 2010;50:101S–12S.

    Article  PubMed  CAS  Google Scholar 

  33. Scholz M, Schirm S, Wetzler M, Engel C, Loeffler M. Pharmacokinetic and -dynamic modelling of G-CSF derivatives in humans. Theor Biol Med Model. 2012;9:32.

    Article  PubMed  CAS  Google Scholar 

  34. Schmitt A, Gladieff L, Laffont CM, Evrard A, Boyer JC, Lansiaux A, et al. Factors for hematopoietic toxicity of carboplatin: refining the targeting of carboplatin systemic exposure. J Clin Oncol. 2010;28:4568–74.

    Article  PubMed  CAS  Google Scholar 

  35. Schmitt A, Gladieff L, Lansiaux A, Bobin-Dubigeon C, Etienne-Grimaldi MC, Boisdron-Celle M, et al. A universal formula based on cystatin C to perform individual dosing of carboplatin in normal weight, underweight, and obese patients. Clin Cancer Res. 2009;15:3633–9.

    Article  PubMed  CAS  Google Scholar 

  36. Molineux G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des. 2004;10:1235–44.

    Article  PubMed  CAS  Google Scholar 

  37. Aapro MS, Cameron DA, Pettengell R, Bohlius J, Crawford J, Ellis M, et al. EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphomas and solid tumours. Eur J Cancer. 2006;42:2433–53.

    Article  PubMed  CAS  Google Scholar 

  38. Brendel K, Comets E, Laffont C, Laveille C, Mentre F. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm Res. 2006;23:2036–49.

    Article  PubMed  CAS  Google Scholar 

  39. Layton JE, Hockman H, Sheridan WP, Morstyn G. Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor. Blood. 1989;74:1303–7.

    PubMed  CAS  Google Scholar 

  40. Takatani H, Soda H, Fukuda M, Watanabe M, Kinoshita A, Nakamura T, et al. Levels of recombinant human granulocyte colony-stimulating factor in serum are inversely correlated with circulating neutrophil counts. Antimicrob Agents Chemother. 1996;40:988–91.

    PubMed  CAS  Google Scholar 

  41. Quartino LQ, Karlsson MO, Lindman H, and Friberg LE. An integrated G-CSF-myelosuppression model characterizing the target mediated disposition of endogenous G-CSF in breast cancer patients following chemotherapy. PAGE 20 (Athens) abstr 2255, 2011.

  42. Avalos BR, Gasson JC, Hedvat C, Quan SG, Baldwin GC, Weisbart RH, et al. Human granulocyte colony-stimulating factor: biologic activities and receptor characterization on hematopoietic cells and small cell lung cancer cell lines. Blood. 1990;75:851–7.

    PubMed  CAS  Google Scholar 

  43. Hanazono Y, Hosoi T, Kuwaki T, Matsuki S, Miyazono K, Miyagawa K, et al. Structural analysis of the receptors for granulocyte colony-stimulating factor on neutrophils. Exp Hematol. 1990;18:1097–103.

    PubMed  CAS  Google Scholar 

  44. Avalos BR. Molecular analysis of the granulocyte colony-stimulating factor receptor. Blood. 1996;88:761–77.

    PubMed  CAS  Google Scholar 

  45. Yang BB, Kido A, Salfi M, Swan S, Sullivan JT. Pharmacokinetics and pharmacodynamics of pegfilgrastim in subjects with various degrees of renal function. J Clin Pharmacol. 2008;48:1025–31.

    Article  PubMed  CAS  Google Scholar 

  46. Todd RC, Lippard SJ. Inhibition of transcription by platinum antitumor compounds. Metallomics. 2009;1:280–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélanie L. Pastor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 22.5 KB)

ESM 2

(DOC 145 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastor, M.L., Laffont, C.M., Gladieff, L. et al. Model-Based Approach to Describe G-CSF Effects in Carboplatin-Treated Cancer Patients. Pharm Res 30, 2795–2807 (2013). https://doi.org/10.1007/s11095-013-1099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1099-z

KEY WORDS

Navigation