Skip to main content
Log in

Protein-Silicone Oil Interactions: Comparative Effect of Nonionic Surfactants on the Interfacial Behavior of a Fusion Protein

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study the effect of three nonionic surfactants on the protein-silicone oil interactions.

Methods

The adsorption of Tween® 80, Pluronic® F68 and Tween® 20 at the silicone oil/water interface (using shifts in frequency (ΔF) and resistance (ΔR) with quartz crystal microbalance) was compared to the adsorption at air/water interface (using surface tension). Effect of surfactants on protein adsorption to the silicone oil/water interface was studied in sequential- and co-adsorption modes. Protein-surfactant binding in the bulk was measured using dynamic surface tension method.

Results

Saturation of air/water and silicone oil/water interfaces by surfactants was observed at similar bulk concentrations. ΔF due to protein adsorption to the interface decreased only when surfactant was present as a pre-adsorbed species. Insignificant differences in the dynamic surface tension values of surfactant solutions were observed in the presence of protein.

Conclusions

Similar hydrophobic forces were responsible for driving the surfactant adsorption at both air/water and silicone oil/water interfaces. Surfactants were effective in reducing the protein adsorption to the silicone oil only when introduced before or along with the protein. No significant binding between the protein and surfactants was observed in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andrade JD. Surface and Interfacial Aspects of Biomedical Polymers, Vol. 2: Protein adsorption. New York; Plenum Press;1985.

  2. Soderquist ME, Walton AG. Structural changes in proteins adsorbed on polymer surfaces. J Colloid Interface Sci. 1980;75(2):386–97.

    Article  CAS  Google Scholar 

  3. Smith EJ. Siliconization of parentral drug packaging components. J Parent Sci Tech. 1988;42(4):S3–S13.

    Google Scholar 

  4. Bernstein RK. Clouding and deactivation of clear (regular) human insulin: association with silicone oil from disposable syringes? Diabetes Care. 1987;10(6):786–7.

    PubMed  CAS  Google Scholar 

  5. Jones LS, Kaufmann A, Middaugh CR. Silicone oil induced aggregation of proteins. J Pharm Sci. 2005;94(4):918–27.

    Article  PubMed  CAS  Google Scholar 

  6. Majumdar S, Ford BM, Mar KD, Sullivan VJ, Ulrich RG, D’Souza AJM. Evaluation of the effect of syringe surfaces on protein formulations. J Pharm Sci. 2011;100(7):2563–73.

    Article  PubMed  CAS  Google Scholar 

  7. Thirumangalathu R, Krishnan S, Ricci MS, Brems DN, Randolph TW, Carpenter JF. Silicone oil- and agitation-induced aggregation of a monoclonal antibody in aqueous solution. J Pharm Sci. 2009;98(9):3167–81.

    Article  PubMed  CAS  Google Scholar 

  8. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3):E501–7.

    Article  PubMed  Google Scholar 

  9. Ludwig DB, Carpenter JF, Hamel J-B, Randolph TW. Protein adsorption and excipient effects on kinetic stability of silicone oil emulsions. J Pharm Sci. 2010;99(4):1721–33.

    PubMed  CAS  Google Scholar 

  10. Auge KB, Blake-Haskins AW, Devine S, Rizvi S, Li Y-M, Hesselberg M, et al. Demonstrating the stability of albinterferon alfa-2b in the presence of silicone oil. J Pharm Sci. 2011;100(12):5100–14.

    Article  PubMed  CAS  Google Scholar 

  11. Romacker M, Schoenknecht T,Forster R. The rise of prefilled syringes from niche product to primary container of choice: a short history.ONdrugDelivery.2008;4–5.

  12. Li J, Pinnamaneni S, Quan Y, Jaiswal A, Andersson F, Zhang X. Mechanistic understanding of protein-silicone oil interactions. Pharm Res. 2012;29(6):1689–97.

    Article  PubMed  CAS  Google Scholar 

  13. Dixit N, Maloney KM, Kalonia DS. The effect of Tween® 20 on silicone oil–fusion protein interactions. Int J Pharm. 2012;429(1–2):158–67.

    Article  PubMed  CAS  Google Scholar 

  14. Haynes CA, Norde W. Structures and stabilities of adsorbed proteins. J Colloid Interface Sci. 1995;169(2):313–28.

    Article  CAS  Google Scholar 

  15. Mollmann SH, Jorgensen L, Bukrinsky JT, Elofsson U, Norde W, Frokjaer S. Interfacial adsorption of insulin: conformational changes and reversibility of adsorption. Eur J Pharm Sci. 2006;27(2–3):194–204.

    Article  PubMed  CAS  Google Scholar 

  16. Joshi O, McGuire J, Wang DQ. Adsorption and function of recombinant factor VIII at solid–water interfaces in the presence of Tween-80. J Pharm Sci. 2008;97(11):4741–55.

    Article  PubMed  CAS  Google Scholar 

  17. Benko B, Vuk-Pavlovic S, Dezelic G, Marićić S. A proton magnetic relaxation study of methaemoproteins bound to monodisperse polystyrene latex particles. J Colloid Interface Sci. 1975;52(3):444–51.

    Article  CAS  Google Scholar 

  18. Singla B, Krisdhasima V, McGuire J. Adsorption kinetics of wild type and two synthetic stability mutants of T4 phage lysozyme at silanized silica surfaces. J Colloid Interface Sci. 1996;182(1):292–6.

    Article  CAS  Google Scholar 

  19. Norde W, Giacomelli CE. BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J Biotechnol. 2000;79(3):259–68.

    Article  PubMed  CAS  Google Scholar 

  20. Chang BS, Kendrick BS, Carpenter JF. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J Pharm Sci. 1996;85(12):1325–30.

    Article  PubMed  CAS  Google Scholar 

  21. Krielgaard L, Jones LS, Randolph TW, Frokjaer S, Flink JM, Manning MC, et al. Effect of tween 20 on freeze-thawing- and agitation-induced aggregation of recombinant human factor XIII. J Pharm Sci. 1998;87(12):1593–603.

    Article  Google Scholar 

  22. Mollmann SH, Elofsson U, Bukrinsky JT, Frokjaer S. Displacement of adsorbed insulin by tween 80 monitored using total internal reflection fluorescence and ellipsometry. Pharm Res. 2005;22(11):1931–41.

    Article  PubMed  CAS  Google Scholar 

  23. Bam NB, Randolph TW, Cleland JL. Stability of protein formulations: investigation of surfactant effects by a novel EPR spectroscopic technique. Pharm Res. 1995;12(1):2–11.

    Article  PubMed  CAS  Google Scholar 

  24. Bam NB, Cleland JL, Yang J, Manning MC, Carpenter JF, Kelley RF, et al. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J Pharm Sci. 1998;87(12):1554–9.

    Article  PubMed  CAS  Google Scholar 

  25. Sukow WW, Sandberg HE, Lewis EA, Eatough DJ, Hansen LD. Binding of the triton X series of nonionic surfactants to bovine serum albumin. Biochemistry. 1980;19(5):912–7.

    Article  PubMed  CAS  Google Scholar 

  26. Chou DK, Krishnamurthy R, Randolph TW, Carpenter JF, Manning MC. Effects of tween 20 and tween 80 on the stability of albutropin during agitation. J Pharm Sci. 2005;94(6):1368–81.

    Article  PubMed  CAS  Google Scholar 

  27. Dixit N, Maloney KM, Kalonia DS. Application of quartz crystal microbalance to study the impact of pH and ionic strength on protein-silicone oil interactions. Int J Pharm. 2011;412(1–2):20–7.

    Article  PubMed  CAS  Google Scholar 

  28. Zeng DL. Investigation of protein-surfactant interactions in aqueous solutions Vol. Ph.D., University of Connecticut, 1997.

  29. Dixit N, Zeng DL, Kalonia DS. Application of maximum bubble pressure surface tensiometer to study protein–surfactant interactions. Int J Pharm. 2012;439(1–2):317–23.

    Article  PubMed  CAS  Google Scholar 

  30. Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924–35.

    Article  PubMed  CAS  Google Scholar 

  31. Kronberg B. Thermodynamics of adsorption of nonionic surfactants on latexes. J Colloid Interface Sci. 1983;96(1):55–68.

    Article  CAS  Google Scholar 

  32. Rosen MJ. Surfactants and Interfacial Phenomena. New York; John Wiley & Sons, Inc., Hoboken, New Jersey, 2004, pp. 34–104.

  33. Prasad KN, Luong TT, FlorenceJoelle Paris AT, Vaution C, Seiller M, Puisieux F. Surface activity and association of ABA polyoxyethylene—polyoxypropylene block copolymers in aqueous solution. J ColloidInterface Sci. 1979;69(2):225–32.

    Article  CAS  Google Scholar 

  34. Vogler EA. Practical use of concentration-dependent contact angles as a measure of solid–liquid adsorption. 2. Experimental aspects. Langmuir. 1992;8(8):2013–20.

    Article  CAS  Google Scholar 

  35. Joshi O, McGuire J. Adsorption behavior of lysozyme and Tween 80 at hydrophilic and hydrophobic silica-water interfaces. Appl Biochem Biotechnol. 2009;152(2):235–48.

    Article  PubMed  CAS  Google Scholar 

  36. Liu SX, Kim J-T. Study of adsorption kinetics of surfactants onto polyethersulfone membrane surface using QCM-D. Desalination. 2009;247(1-3):355–61.

    Article  CAS  Google Scholar 

  37. Haynes CA, Norde W. Globular proteins at solid/liquid interfaces. Colloids Surf B. 1994;2(6):517–66.

    Article  CAS  Google Scholar 

  38. MacRitchie F, Alexander AE. Kinetics of adsorption of proteins at interfaces. Part II. The role of pressure barriers in adsorption. J Colloid Sci. 1963;18(5):458–63.

    Article  Google Scholar 

  39. Macritchie F. In C.B. Anfinsen, J.T. Edsall, and F.M. Richards (eds.), Advances in Protein Chemistry, Vol. 32, New York, Academic Press, 1978, pp. 283–326.

Download references

Acknowledgments and Disclosures

Biogen Idec is gratefully acknowledged for the material and financial support of this work. Financial support to N.D. in the form of Gerald J. Jackson memorial award and University of Connecticut graduate school doctoral dissertation fellowship are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra S. Kalonia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixit, N., Maloney, K.M. & Kalonia, D.S. Protein-Silicone Oil Interactions: Comparative Effect of Nonionic Surfactants on the Interfacial Behavior of a Fusion Protein. Pharm Res 30, 1848–1859 (2013). https://doi.org/10.1007/s11095-013-1028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1028-1

Key words

Navigation