Skip to main content

Protein—Surfactant Interactions at the Air-Water Interface

  • Chapter
  • First Online:
Excipient Applications in Formulation Design and Drug Delivery

Abstract

Air-aqueous interfacial properties of four excipient proteins commonly used in immunoassay reagent formulations were studied with shear rheology and surface characterization methods. A Du Noüy ring geometry was utilized to quantify the elastic (Gʹ) and viscous (Gʺ) shear moduli of protein interfacial networks and to probe the effect of several nonionic surfactants at various concentrations. Time sweep protocols of buffered protein solutions yielded Gʹ that varied in value relative to protein structure. The effect of nonionic surfactants on Gʹ of a protein was concentration dependent and the magnitude of protein displacement from the interface varied with Tween 20 > Triton X-100 > Triton X-405, with the exception of Mouse IgG. Degree of displacement of BSA from the interface by Tween 20 was approximately 66 fold greater than that of BGG whose displacement by Tween 20 was approximately 7 fold greater than that of Mouse IgG. Degrees of displacement by Triton X-100 were comparable in case of studied proteins. Surface tension characterization suggests that the interfacial interactions between proteins and surfactants are driven not only by their surface activity but also by the network formation abilities of the proteins. Data presented in this chapter demonstrate a potential application of interfacial studies to sensitively identify discriminatory interactions between proteins and surfactants in immunoassay solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BGG:

Bovine gamma globulin

BSA:

Bovine serum albumin

CMC:

Critical micellar concentration

CTAB:

Cetyltrimetyl ammonium bromide

IgG:

Immunoglobulin G

NSB:

Non-specific binding

SDS:

Sodium dodecyl sulfate

TW20:

Tween 20

TX100:

Triton X-100

TX405:

Triton X-405

References

  • Baldursdottir SG, Jorgensen L (2011) The influence of size, structure and hydrophilicity of model surfactants on the adsorption of lysozyme to oil–water interface—interfacial shear measurements. Colloids Surf B: Biointerfaces 87(1):96–102

    Article  CAS  PubMed  Google Scholar 

  • Baldursdottir SG, Fullerton MS, Nielsen SH, Jorgensen L (2010) Adsorption of proteins at the oil/water interface—observation of protein adsorption by interfacial shear stress measurements. Colloids Surf B: Biointerfaces 79(1):41–46

    Article  CAS  PubMed  Google Scholar 

  • Benesch J, Mano JF, Reis RL (2010) Analysing protein competition on self-assembled mono-layers studied with quartz crystal microbalance. Acta Biomater 6(9):3499–3505

    Article  CAS  PubMed  Google Scholar 

  • Brant D, Figard S (2005) Immunoassay development in the In Vitro diagnostic industry. In: Wild D (ed) The immunoassay handbook, 3rd edn. Elsevier, Amsterdam, pp 136–143

    Google Scholar 

  • Burgess DJ, Sahin NO (1997) Interfacial rheological and tension properties of protein films. J Colloid Interf Sci 189(1):74–82

    Article  CAS  Google Scholar 

  • Cascão Pereira LG, Théodoly O, Blanch HW, Radke CJ (2003) Dilatational rheology of BSA conformers at the air/water interface. Langmuir 19(6):2349–2356

    Article  Google Scholar 

  • Christofides ND (2005) Free analyte immunoassay. In: Wild D (ed) The immunoassay handbook. 3rd edn. Elsevier, Amsterdam, pp 63–78

    Google Scholar 

  • Cipriano BH, Raghavan SR, McGuiggan PM (2005) Surface tension and contact angle measurements of a hexadecyl imidazolium surfactant adsorbed on a clay surface. Colloids Surf A: Physicochem Eng Aspects 262:8–13

    Article  CAS  Google Scholar 

  • Cox AR, Cagnol F, Russell AB, Izzard MJ (2007) Surface properties of class II hydrophobins from Trichoderma reesei and influence on bubble stability. Langmuir 23(15):7995–8002

    Article  CAS  PubMed  Google Scholar 

  • Davies C (2005) Introduction to immunoassay principles. In: Wild D (ed) The immunoassay handbook. 3rd edn. Elsevier, Amsterdam, pp 3–40

    Google Scholar 

  • Dickinson E, Pawlowsky K (1997) Effect of ι-carrageenan on flocculation, creaming, and rheology of a protein-stabilized emulsion. J Agr Food Chem 45(10):3799–3806

    Article  CAS  Google Scholar 

  • Dresser DW (1961) Acquired immunological tolerance to a fraction of bovine gamma globulin. Immunology 4:13–23

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eigel WN, Butler JE, Ernstrom CA, Farrell Jr HM, Harwalkar VR, Jenness R, Whitney RM (1984) Nomenclature of proteins of cow's milk: fifth revision. J Dairy Sci 67(8):1599–1631

    Google Scholar 

  • Engel MFM, Visser AJWG, van Mierlo CPM (2003) Refolding of adsorbed bovine α-Lactalbumin during surfactant induced displacement from a hydrophobic interface. Langmuir 19(7):2929–2937

    Article  CAS  Google Scholar 

  • Evanov IB, Basheva ES, Gurkov TD, Hadjiiski AD, Arnaudov LN, Vassileva ND, Tcholakova SS, Campbell BE (2001) Stability of oil-in-water emulsions containing protein. In: Dickinson E, Miller R (eds) Food colloids: fundamentals of formulation, vol Proc. Food Colloids 2000: fundamentals of formulation conference: Potsdam 2000. The Royal Society of Chemistry, Cambridge, pp 73–90

    Google Scholar 

  • Florence AT, Attwood D (eds) (2011) Emulsions, suspensions and other disperse systems(Chap.6). Physicochemical principles of pharmacy, 5th edn. Pharmaceutical Press, London

    Google Scholar 

  • Franck A (2015) The AR-G2 with Du Noüy ring for interfacial rheometry. Report No. APN012, pp. 1–4, TA Instruments Germany. Online database. http://www.tainstruments.com/main.aspx?n=2&id=181&main_id=592&siteid=7. Accessed 30 Jan 2015

  • Goffin AJJ, Rajadas J, Fuller GG (2009) Interfacial flow processing of collagen. Langmuir 26(5):3514–3521

    Article  Google Scholar 

  • Gunning PA, Mackie AR, Gunning AP, Wilde PJ, Woodward NC, Morris VJ (2004) The effect of surfactant type on protein displacement from the air–water interface. Food Hydrocolloids 18(3):509–515

    Article  CAS  Google Scholar 

  • Hassan N, Maldonado-Valderrama J, Gunning AP, Morris VJ, Ruso JM (2011) Surface characterization and AFM imaging of mixed fibrinogen–surfactant films. J Phy Chem B 115(19):6304–6311

    Article  CAS  Google Scholar 

  • Hiemenz PC, Rajagopalan R (1997) Surface tension and contact angleapplication to pure substances. In: Principles of colloid and surface chemistry. 3rd edn. Marcel Dekker, Inc., New York, pp 248–296

    Google Scholar 

  • Hollmann A, Delfederico L, De Antoni G, Semorile L, Disalvo EAb (2010) Relaxation processes in the adsorption of surface layer proteins to lipid membranes. J Phy Chem B 114(49):16618–16624

    Article  CAS  Google Scholar 

  • Jaishankar A, Sharma V, McKinley GH (2011) Interfacial viscoelasticity, yielding and creep ringing of globular protein-surfactant mixtures. Soft Matter 7(17):7623–7634

    Article  CAS  Google Scholar 

  • Jung J-M, Gunes DZ, Mezzenga R (2010) Interfacial activity and interfacial shear rheology of Native β-Lactoglobulin monomers and their heat-induced fibers. Langmuir 26(19):15366–15375

    Article  CAS  PubMed  Google Scholar 

  • Katakam M, Banga AK (1997) Use of Poloxamer polymers to stabilize recombinant human growth hormone against various processing stresses. Pharm Dev Technol 2(2):143–149

    Article  CAS  PubMed  Google Scholar 

  • Krägel J, Derkatch SR (2010) Interfacial shear rheology. Curr Opin Colloid In 15(4):246–255

    Article  Google Scholar 

  • Kragel J, Derkatch SR, Miller R (2008) Interfacial shear rheology of protein-surfactant layers. Adv Colloid Interface Sci 144(1–2):38–53

    Article  CAS  PubMed  Google Scholar 

  • Lahlou A, Blanchet B, Carvalho M, Paul M, Astier A (2009) Mechanically-induced aggregation of the monoclonal antibody cetuximab. Ann Pharm Fr 67(5):340–352

    Article  CAS  PubMed  Google Scholar 

  • Mackie AR, Gunning AP, Wilde PJ, Morris VJ (2000) Competitive displacement of β-Lactoglobulin from the air/water interface by sodium dodecyl sulfate. Langmuir 16(21):8176–8181

    Article  CAS  Google Scholar 

  • Mackie AR, Gunning AP, Ridout MJ, Wilde PJ, Morris VJ (2001a) Orogenic displacement in mixed β-Lactoglobulin/β-Casein films at the air/water Interface. Langmuir 17(21):6593–6598

    Article  CAS  Google Scholar 

  • Mackie AR, Gunning AP, Ridout MJ, Wilde PJ, Rodriguez Patino J (2001b) In situ measurement of the displacement of protein films from the air/water interface by surfactant. Biomacromolecules 2(3):1001–1006

    Article  CAS  PubMed  Google Scholar 

  • Mackie AR, Gunning AP, Pugnaloni LA, Dickinson E, Wilde PJ, Morris VJ (2003) Growth of surfactant domains in protein films. Langmuir 19(15):6032–6038

    Article  CAS  Google Scholar 

  • Mahler HC, Senner F, Maeder K, Maeder K, Mueller R (2009) Surface activity of a monoclonal antibody. J Pharm Sci 98(1520–6017 (Electronic)):4525

    Article  CAS  PubMed  Google Scholar 

  • McClellan SJ, Franses EI (2003) Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin. Colloids Surf B: Biointerfaces 28(1):63–75

    Article  CAS  Google Scholar 

  • Mollmann SH, Elofsson U, Bukrinsky JT, Frokjaer S (2005) Displacement of adsorbed insulin by Tween 80 monitored using total internal reflection fluorescence and ellipsometry. Pharm Res 22(0724–8741 (Print)):1931

    Article  CAS  PubMed  Google Scholar 

  • Mollmann SH, Jorgensen L, Bukrinsky JT, Elofsson U, Norde W, Frokjaer S (2006) Interfacial adsorption of insulin: conformational changes and reversibility of adsorption. Eur J Pharm Sci 27(2–3):194–204

    Article  CAS  PubMed  Google Scholar 

  • Morris VJ, Gunning AP (2008) Microscopy, microstructure and displacement of proteins from interfaces: implications for food quality and digestion. Soft Matter 4(5):943–951

    Article  CAS  Google Scholar 

  • Murray BS (1998) Interfacial rheology of mixed food protein and surfactant adsorption layers with respect to emulsion and foam stability. In: Mobius D, Miller R (eds) Proteins at liquid interfaces. Studies in interface science, vol 7. Elsevier, Amsterdam, pp 179–220

    Chapter  Google Scholar 

  • Murray BS (2011) Rheological properties of protein films. Curr Opin Colloid Interface Sci 16(1):27–35

    Article  CAS  Google Scholar 

  • Niño M, Patino JMR (1998) Surface tension of bovine serum albumin and tween 20 at the air-aqueous interface. J Amer Oil Chem Soc 75(10):1241–1248

    Article  Google Scholar 

  • Noskov BA, Mikhailovskaya AA, Lin SY, Loglio G, Miller R (2010) Bovine serum albumin unfolding at the air/water interface as studied by dilational surface rheology. Langmuir 26(22):17225–17231

    Article  CAS  PubMed  Google Scholar 

  • Patapoff TW, Esue O (2009) Polysorbate 20 prevents the precipitation of a monoclonal antibody during shear. Pharm Dev Technol 14(1097–9867 (Electronic)):659

    Article  CAS  PubMed  Google Scholar 

  • Patino JM, Sanchez CC, Fernandez MC, Nino MR (2007) Protein displacement by monoglyceride at the air-water interface evaluated by surface shear rheology combined with Brewster angle microscopy. J Phys Chem B 111(28):8305–8313

    Article  CAS  PubMed  Google Scholar 

  • Perez AA, Sánchez CC, Patino JMR, Rubiolo AC, Santiago LG (2010) Milk whey proteins and xanthan gum interactions in solution and at the air–water interface: a rheokinetic study. Colloids and Surf B: Biointerfaces 81(1):50–57

    Article  CAS  PubMed  Google Scholar 

  • Perez AA, Sánchez CC, Rodríguez Patino JM, Rubiolo AC, Santiago LG (2011) Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air–water interface saturation. Colloids and Surf B: Biointerfaces 85(2):306–315

    Article  CAS  PubMed  Google Scholar 

  • Phang TL, McClellan SJ, Franses EI (2005) Displacement of fibrinogen from the air/aqueous interface by dilauroylphosphatidylcholine lipid. Langmuir 21(22):10140–10147

    Article  CAS  PubMed  Google Scholar 

  • Rampon V, Genot C, Riaublanc A, Anton M, Axelos MA, McClements DJ (2003) Front-face fluorescence spectroscopy study of globular proteins in emulsions: displacement of BSA by a nonionic surfactant. J Agric Food Chem 51(9):2482–2489

    Article  CAS  PubMed  Google Scholar 

  • Randolph TW, Jones LS (2002) Surfactant-Protein interactions. In: Carpenter JF, Manning MC (eds) Rational design of stable protein formulations. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Reimhult K, Petersson K, Krozer A (2008) QCM-D analysis of the performance of blocking agents on gold and polystyrene surfaces. Langmuir 24(16):8695–8700

    Article  CAS  PubMed  Google Scholar 

  • Ridout MJ, Mackie AR, Wilde PJ (2004) Rheology of mixed beta-casein/beta-lactoglobulin films at the air-water interface. J Agric Food Chem 52(12):3930–3937

    Article  CAS  PubMed  Google Scholar 

  • Roth S, Murray BS, Dickinson E (2000) Interfacial shear rheology of aged and heat-treated beta-lactoglobulin films: displacement by nonionic surfactant. J Agric Food Chem 48(5):1491–1497

    Article  CAS  PubMed  Google Scholar 

  • Schwenke KD (1998) Proteins: some principles of classification and structure. In: Mobius D, Miller R (eds) Proteins at liquid interfaces. Studies in interface science, vol 7. Elsevier, Amsterdam, pp 1–50

    Chapter  Google Scholar 

  • Soman P, Siedlecki CA (2011) Effects of protein solution composition on the time-dependent functional activity of fibrinogen on surfaces. Langmuir 27(17):10814–10819

    Article  CAS  PubMed  Google Scholar 

  • Vaidya SV, Narváez AR (2014) Understanding interactions between immunoassay excipient proteins and surfactants at air–aqueous interface. Colloids and Surf B: Biointerfaces 113(0):285–294

    Google Scholar 

  • Vidanovic D, Milic Askrabic J, Stankovic M, Poprzen V (2003) Effects of nonionic surfactants on the physical stability of immunoglobulin G in aqueous solution during mechanical agitation. Die Pharmazie 58(0031–7144 (Print)):399

    CAS  PubMed  Google Scholar 

  • Whitaker JR (1963) Determination of molecular weights of proteins by gel filtration of sephadex. Anal Chem 35(12):1950–1953

    Article  CAS  Google Scholar 

  • Wood WG (2008) Immunoassays & co.: past, present, future?—A review and outlook from personal experience and involvement over the past 35 years. Clin Lab 54(1433–6510 (Print)):423

    CAS  PubMed  Google Scholar 

  • Woodward NC, Wilde PJ, Mackie AR, Gunning AP, Gunning PA, Morris VJ (2004) Effect of processing on the displacement of whey proteins: applying the orogenic model to a real system. J Agric Food Chem 52(5):1287–1292

    Article  CAS  PubMed  Google Scholar 

  • Woodward NC, Gunning AP, Mackie AR, Wilde PJ, Morris VJ (2009) Comparison of the orogenic displacement of sodium caseinate with the caseins from the air-water interface by nonionic surfactants. Langmuir 25(12):6739–6744

    Article  CAS  PubMed  Google Scholar 

  • Woodward NC, Gunning AP, Maldonado-Valderrama J, Wilde PJ, Morris VJ (2010) Probing the in situ competitive displacement of protein by nonionic surfactant using atomic force microscopy. Langmuir 26(15):12560–12566

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Lim JY, Fuller GG, Cegelski L (2012) Disruption of escherichia coli amyloid-integrated biofilm formation at the air–liquid interface by a polysorbate surfactant. Langmuir 29(3):920–926

    Article  Google Scholar 

  • Zhu Y, Xu G, Xin X, Zhang H, Shi X (2009) Surface tension and dilational viscoelasticity of water in the presence of surfactants Tyloxapol and Triton X-100 with Cetyl Trimethylammonium Bromide at 25 °C. J Chem Eng Data 54(3):989–995

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo R. Narváez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Narváez, A., Vaidya, S. (2015). Protein—Surfactant Interactions at the Air-Water Interface. In: Narang, A., Boddu, S. (eds) Excipient Applications in Formulation Design and Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-20206-8_6

Download citation

Publish with us

Policies and ethics