Skip to main content
Log in

Erythropoietin-Induced Erythroid Precursor Pool Depletion Causes Erythropoietin Hyporesponsiveness

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to demonstrate that the erythroid precursor depletion in bone marrow induced by recombinant human erythropoietin (rHuEPO) treatment may be another contributing factor to erythropoietin hyporesponsiveness.

Methods

Healthy Wistar rats were given single dose (SD) or multiple doses (MD) of rHuEPO (100 IU/kg). In MD study, animals were challenged with thrice-weekly over two weeks. Blood, bone marrow and spleen (for SD only) were collected. The erythropoietic responses in bone marrow and spleen were quantified using a flow cytometric immunophenotyping technique. A mathematical approach involving measuring reticulocyte age distribution was developed to evaluate the reticulocyte loss due to neocytolysis.

Results

A reduced level of erythropoietic responses below the baseline was observed for both MD and SD studies. In SD study, the reticulocyte decreased below the baseline after day 6. A depletion of the bone marrow erythroid precursor cells was observed. However, neocytolysis of reticulocyte only occurs from day 3-5 after rHuEPO injection.

Conclusions

The findings demonstrate that EPO-induced erythroid precursor depletion in bone marrow is responsible for reduced reticulocyte response and may contribute to erythropoietin hyporesponsiveness. Therefore, this study provides further justification for reducing the doses of erythropoietin-stimulating agents in anemic patients demonstrating hyporesponsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Koury MJ, Sawyer ST, Brandt SJ. New insights into erythropoiesis. Curr Opin Hematol. 2002;9(2):93–100.

    Article  PubMed  Google Scholar 

  2. Elliott S, Pham E, Macdougall IC. Erythropoietins: a common mechanism of action. Exp Hematol. 2008;36(12):1573–84.

    Article  PubMed  CAS  Google Scholar 

  3. Richmond TD, Chohan M, Barber DL. Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol. 2005;15(3):146–55.

    Article  PubMed  CAS  Google Scholar 

  4. Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells. J Cell Physiol. 1988;137(1):65–74.

    Article  PubMed  CAS  Google Scholar 

  5. Testa U. Apoptotic mechanisms in the control of erythropoiesis. Leukemia. 2004;18(7):1176–99.

    Article  PubMed  CAS  Google Scholar 

  6. Wintrobe MM, Greer JP. Wintrobe’s clinical hematology: Lippincott Williams & Wilkins; 2004.

  7. Raff MC. Social controls on cell survival and cell death. Nature. 1992;356(6368):397–400.

    Article  PubMed  CAS  Google Scholar 

  8. Hillman RS. Characteristics of marrow production and reticulocyte maturation in normal man in response to anemia. J Clin Invest. 1969;48(3):443–53.

    Article  PubMed  CAS  Google Scholar 

  9. Major A, Bauer C, Breymann C, Huch A, Huch R. rh-erythropoietin stimulates immature reticulocyte release in man. Br J Haematol. 1994;87(3):605–8.

    Article  PubMed  CAS  Google Scholar 

  10. Rodak BF, Fritsma GA, Doig K. Hematology: clinical principles and applications. 3rd ed. St. Louis: Saunders Elsevier; 2007.

    Google Scholar 

  11. Chasis JA, Prenant M, Leung A, Mohandas N. Membrane assembly and remodeling during reticulocyte maturation. Blood. 1989;74(3):1112–20.

    PubMed  CAS  Google Scholar 

  12. Waugh RE. Reticulocyte rigidity and passage through endothelial-like pores. Blood. 1991;78(11):3037–42.

    PubMed  CAS  Google Scholar 

  13. Noble NA, Xu QP, Hoge LL. Reticulocytes II: reexamination of the in vivo survival of stress reticulocytes. Blood. 1990;75(9):1877–82.

    PubMed  CAS  Google Scholar 

  14. Alfrey CP, Udden MM, Leach-Huntoon C, Driscoll T, Pickett MH. Control of red blood cell mass in spaceflight. J Appl Physiol. 1996;81(1):98–104.

    PubMed  CAS  Google Scholar 

  15. Alfrey CP, Rice L, Udden MM, Driscoll TB. Neocytolysis: physiological down-regulator of red-cell mass. Lancet. 1997;349(9062):1389–90.

    Article  PubMed  CAS  Google Scholar 

  16. Trial J, Rice L, Alfrey CP. Erythropoietin withdrawal alters interactions between young red blood cells, splenic endothelial cells, and macrophages: an in vitro model of neocytolysis. J Investig Med. 2001;49(4):335–45.

    Article  PubMed  CAS  Google Scholar 

  17. Rice L, Alfrey CP. Modulation of red cell mass by neocytolysis in space and on Earth. Pflugers Arch. 2000;441(2–3 Suppl):R91–4.

    PubMed  CAS  Google Scholar 

  18. Rice L, Ruiz W, Driscoll T, et al. Neocytolysis on descent from altitude: a newly recognized mechanism for the control of red cell mass. Ann Intern Med. 2001;134(8):652–6.

    PubMed  CAS  Google Scholar 

  19. Risso A, Turello M, Biffoni F, Antonutto G. Red blood cell senescence and neocytolysis in humans after high altitude acclimatization. Blood Cells Mol Dis. 2007;38(2):83–92.

    Article  PubMed  CAS  Google Scholar 

  20. Trial J, Rice L. Erythropoietin withdrawal leads to the destruction of young red cells at the endothelial-macrophage interface. Curr Pharm Des. 2004;10(2):183–90.

    Article  PubMed  CAS  Google Scholar 

  21. Macdougall IC, Cooper AC. Erythropoietin resistance: the role of inflammation and pro-inflammatory cytokines. Nephrol Dial Transplant. 2002;17 Suppl 11:39–43.

    Article  PubMed  CAS  Google Scholar 

  22. Besarab A, Bolton WK, Browne JK, et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med. 1998;339(9):584–90.

    Article  PubMed  CAS  Google Scholar 

  23. Szczech LA, Barnhart HX, Inrig JK, et al. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008;74(6):791–8.

    Article  PubMed  CAS  Google Scholar 

  24. Solomon SD, Uno H, Lewis EF, et al. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N Engl J Med. 2010;363(12):1146–55.

    Article  PubMed  CAS  Google Scholar 

  25. Elliott J, Mishler D, Agarwal R. Hyporesponsiveness to erythropoietin: causes and management. Adv Chronic Kidney Dis. 2009;16(2):94–100.

    Article  PubMed  Google Scholar 

  26. Johnson DW, Pollock CA, Macdougall IC. Erythropoiesis-stimulating agent hyporesponsiveness. Nephrology (Carlton). 2007;12(4):321–30.

    Article  CAS  Google Scholar 

  27. Kanbay M, Perazella MA, Kasapoglu B, Koroglu M, Covic A. Erythropoiesis stimulatory agent- resistant anemia in dialysis patients: review of causes and management. Blood Purif. 2010;29(1):1–12.

    Article  PubMed  Google Scholar 

  28. Kwack C, Balakrishnan VS. Managing erythropoietin hyporesponsiveness. Semin Dial. 2006;19(2):146–51.

    Article  PubMed  Google Scholar 

  29. Macdougall IC, Cooper AC. Hyporesponsiveness to erythropoietic therapy due to chronic inflammation. Eur J Clin Invest. 2005;35 Suppl 3:32–5.

    Article  PubMed  CAS  Google Scholar 

  30. van der Putten K, Braam B, Jie KE, Gaillard CA. Mechanisms of Disease: erythropoietin resistance in patients with both heart and kidney failure. Nat Clin Pract Nephrol. 2008;4(1):47–57.

    Article  PubMed  Google Scholar 

  31. Parfrey PS. Erythropoietin-stimulating agents in chronic kidney disease: a response to hyporesponsiveness. Semin Dial. 2011;24(5):495–7.

    Article  PubMed  Google Scholar 

  32. Ait-Oudhia S, Scherrmann JM, Krzyzanski W. Time-dependent clearance and hematological pharmacodynamics upon erythropoietin multiple dosing in rats. Biopharm Drug Dispos. 2010;31(5–6):298–315.

    PubMed  CAS  Google Scholar 

  33. Cheung WK, Goon BL, Guilfoyle MC, Wacholtz MC. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin after single and multiple subcutaneous doses to healthy subjects. Clin Pharmacol Ther. 1998;64(4):412–23.

    Article  PubMed  CAS  Google Scholar 

  34. Woo S, Krzyzanski W, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous administration in rats. J Pharmacol Exp Ther. 2006;319(3):1297–306.

    Article  PubMed  CAS  Google Scholar 

  35. Wiczling P, Ait-Oudhia S, Krzyzanski W. Flow cytometric analysis of reticulocyte maturation after erythropoietin administration in rats. Cytometry A. 2009;75(7):584–92.

    PubMed  Google Scholar 

  36. Donohue DM, Reiff RH, Hanson ML, Betson Y, Finch CA. Quantitative measurement of the erythrocytic and granulocytic cells of the marrow and blood. J Clin Invest. 1958;37(11):1571–6.

    Article  PubMed  CAS  Google Scholar 

  37. Papayannopoulou T, Finch CA. On the in vivo action of erythropoietin: a quantitative analysis. J Clin Invest. 1972;51(5):1179–85.

    Article  PubMed  CAS  Google Scholar 

  38. Hermans MH, Opstelten D. In situ visualization of hemopoietic cell subsets and stromal elements in rat and mouse bone marrow by immunostaining of frozen sections. J Histochem Cytochem. 1991;39(12):1627–34.

    Article  PubMed  CAS  Google Scholar 

  39. Lok CN, Ponka P. Identification of an erythroid active element in the transferrin receptor gene. J Biol Chem. 2000;275(31):24185–90.

    Article  PubMed  CAS  Google Scholar 

  40. Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood. 2006;108(1):123–33.

    Article  PubMed  CAS  Google Scholar 

  41. Wiczling P, Krzyzanski W. Method of determination of the reticulocyte age distribution from flow cytometry count by a structured-population model. Cytometry A. 2007;71(7):460–7.

    PubMed  Google Scholar 

  42. Kato M, Kato Y, Sugiyama Y. Mechanism of the upregulation of erythropoietin-induced uptake clearance by the spleen. Am J Physiol. 1999;276(5 Pt 1):E887–95.

    PubMed  CAS  Google Scholar 

  43. De Maria R, Testa U, Luchetti L, et al. Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. Blood. 1999;93(3):796–803.

    PubMed  Google Scholar 

  44. Bugelski PJ, Nesspor T, Volk A, et al. Pharmacodynamics of recombinant human erythropoietin in murine bone marrow. Pharm Res. 2008;25(2):369–78.

    Article  PubMed  CAS  Google Scholar 

  45. Socolovsky M, Murrell M, Liu Y, Pop R, Porpiglia E, Levchenko A. Negative autoregulation by FAS mediates robust fetal erythropoiesis. PLoS Biol. 2007;5(10):e252.

    Article  PubMed  Google Scholar 

  46. Singbrant S, Russell MR, Jovic T, et al. Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood. 2011;117(21):5631–42.

    Article  PubMed  CAS  Google Scholar 

  47. Piron M, Loo M, Gothot A, Tassin F, Fillet G, Beguin Y. Cessation of intensive treatment with recombinant human erythropoietin is followed by secondary anemia. Blood. 2001;97(2):442–8.

    Article  PubMed  CAS  Google Scholar 

  48. Locatelli F, Del Vecchio L. Erythropoiesis-stimulating agents in renal medicine. Oncologist. 2011;16 Suppl 3:19–24.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported by the National Institutes of Health Grant GM 57980

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Krzyzanski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Ait-Oudhia, S. & Krzyzanski, W. Erythropoietin-Induced Erythroid Precursor Pool Depletion Causes Erythropoietin Hyporesponsiveness. Pharm Res 30, 1026–1036 (2013). https://doi.org/10.1007/s11095-012-0938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0938-7

KEY WORDS

Navigation