Skip to main content
Log in

Pharmacodynamics of Recombinant Human Erythropoietin in Murine Bone Marrow

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Originally approved for three times/week dosing, recombinant human erythropoietin (rhEPO) is now often used at weekly intervals. We have studied rhEPO in mice to better understand why the extended dosing interval retains efficacy.

Methods

C57Bl/6 mice received a single sc. dose of rhEPO (3,000 IU/kg). Bone marrow and blood were collected at 8 h and 1, 2, 5 and 7 days. Staining for TER-119 and CD71, pulse labeling with bromodeoxyuridine, annexin-V binding and vital staining with 7-aminoactinomycin d were used cell cycle and apoptosis in erythroblasts by four color flow cytometry.

Results

A wave of proliferation and/or maturation progressed through all erythroblasts, resulting in the emigration of immature reticulocytes into the periphery. An increase in the fraction of erythroblasts in S and G2M was found, but suppression of apoptosis was not.

Conclusions

Most of the effects of rhEPO occurred 48 h after dosing, when the concentration of rhEPO was less than 1% of Cmax, suggesting that the processes set in motion by rhEPO can continue after rhEPO concentrations fall. Our observation of apoptosis in erythroblasts even when rhEPO concentrations were high suggests that regulatory mechanisms which down-regulate erythropoiesis are also engaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. J. Koury, S. T. Sawyer, and S. J. Brandt. New insights into erythropoiesis. Curr. Opinion. Hematol. 9:93–100 (2002).

    Article  Google Scholar 

  2. D. Wen, J. P. Boissel, T. E. Tracy, et al. Erythropoietin structure–function relationships: high degree of sequence homology among mammals. Blood 82:1507–1516 (1993).

    PubMed  CAS  Google Scholar 

  3. P. L. Pearson, T. P. Smith, T. S. Sonstegard, H. G. Klemcke, R. K. Christenson, and J. L. Vallet. Porcine erythropoietin receptor: molecular cloning and expression in embryonic and fetal liver. Domest. Anim. Endocrinol. 19:25–38 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. J. L. Spivak. The mechanism of action of erythropoietin. Int. J. Cell Cloning. 4:139–166 (1986).

    Article  PubMed  CAS  Google Scholar 

  5. R. Maria De, U. Testa, and L. Luchetti. Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. Blood 93:796–803 (1999).

    PubMed  Google Scholar 

  6. Y. Sadahira, and M. Mori. Role of macrophages in erythropoiesis. Pathol. Int. 49:841–848 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. K.-H. Chang, M. Tam, and M. M. Stevenson. Inappropriately low reticulocytosis in severe malarial anemia correlates with suppression in the development of late erythroid precursors. Blood 103:3727–3735 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. T. Kina, K. Ikuta, E. Takayama, K. Wada, A. S. Majumdar, I. L. Weissman, and Y. Katsura. The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br. J. Haematol. 109:280–287 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. M. Socolovsky, S. N. Constantinescu, S. Bergelson, A. Sirotkin, and H. F. Lodish. Cytokines in hematopoiesis: specificity and redundancy in receptor function. Adv. Protein Chem. 52:141–198 (1999).

    Article  Google Scholar 

  10. W. Jelkmann. The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP. Eur. J. Haematol. 69:265–274 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. B. Dalle, A. Henri, P. Rouyer-Fessard, et al. Dimeric erythropoietin fusion protein with enhanced erythropoietic activity in vitro and in vivo. Blood 97:3776–3782 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. M. Kato, K. Miura, H. Kamiyama, et al. Pharmacokinetics of erythropoietin in genetically anemic mice. Drug Metab. Dispos. 26:126–131 (1998).

    PubMed  CAS  Google Scholar 

  13. H. Bleuel, R. Hoffmann, B. Kaufmann, P. Neubert, P. P. Ochlich, and W. Schaumann. Kinetics of subcutaneous versus intravenous epoetin-beta in dogs, rats and mice. Pharmacology 52:329–338 (1996).

    PubMed  CAS  Google Scholar 

  14. C. E. Lezon, M. P. Marinez, M. I. Conti, and C. E. Bozzini. Plasma disappearance of exogenous erythropoietin in mice under various experimental conditions. Endocrine 8:331–333 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. O. Sowade, B. Sowade, K. Brilla, et al. Kinetics of reticulocyte maturity fractions and indices and iron status during therapy with epoetin beta (recombinant human erythropoietin) in cardiac surgery patients. Am. J. Hematol. 55:89–96 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. D. Metcalf, and M. A. S Moore. Hematopoietic Cells. Elsevier, Amsterdam (1967).

    Google Scholar 

  17. J. Quinn, P. W. Fisher, R. J. Capocasale, et al. A statistical pattern recognition approach for determining cellular viability and lineage phenotype in cultured cells and murine bone marrow. Cytometry Part A (in press)

  18. M. Holm, M. Thomsen, M. Hoyer, and P. Hokland. Optimization of a flow cytometric method for the simultaneous measurement of cell surface antigen, DNA content, and in vitro BrdUrd incorporation into normal and malignant hematopoietic cells. Cytometry 32:28–36 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. S. H. Merchant, N. J. Gonchoroff, and R. E. Hutchison. Apoptotic index by annexin V flow cytometry: adjunct to morphologic and cytogenetic diagnosis of myelodysplastic syndromes. Cytometry 46:28–32 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. V. Covelli, G. Briganti, and G. Silini. An analysis of bone marrow erythropoiesis in the mouse. Cell Tissue Kinet. 5:41–51 (1972).

    PubMed  CAS  Google Scholar 

  21. B. I. Lord. Kinetics of the recognizable erythrocyte precursor cells. Clin. Hematol. 8:335–350 (1979).

    CAS  Google Scholar 

  22. Papayannopoulou T, Finch CA. On the in vivo action of erythropoietin: a quantitative analysis. J. Clin. Invest. 51:1179–1185 (1972).

    PubMed  CAS  Google Scholar 

  23. J. C. Schooley. Responsiveness of hematopoietic tissue to erythropoietin in relation to the time of administration and duration of action of the hormone. Blood 25:795–808 (1965).

    PubMed  CAS  Google Scholar 

  24. W. Nijhof, G. de Haan, J. Pietens, and B. Dontje. Mechanistic options of erythropoietin-stimulated erythropoiesis. Exp. Hematol. 23:369–375 (1995).

    PubMed  CAS  Google Scholar 

  25. H. Borsook, J. B. Lingrel, J. L. Sears, and R. L. Millette. Synthesis of haemoglobin in relation to the maturation of erythroid cells. Nature 196:347–350 (1962).

    Article  PubMed  CAS  Google Scholar 

  26. G. J. Fruhman, and S. Fischer. The short-term effects of a single dose of erythropoietin upon reticulocytes in starved rats. Experimentia 18:462–464 (1962).

    Article  CAS  Google Scholar 

  27. V. C. Broudy, N. Lin, M. Brice, B. Nakamoto, and T. Papayannopoulou. Erythropoietin receptor characteristics on primary human erythroid cells. Blood 77:2583–2590 (1991).

    PubMed  CAS  Google Scholar 

  28. W. D. Lawrence, P. J. Davis, and S. D. Blas. Action of erythropoietin in vitro on rabbit reticulocyte membrane Ca2+-ATPase activity. J. Clin. Invest. 80:586–589 (1987).

    PubMed  CAS  Google Scholar 

  29. S. M. Jacobs-Helber, and S. T. Sawyer. Jun N-terminal kinase promotes proliferation of immature erythroid cells and erythropoietin-dependent cell lines. Blood 104:696–703 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. L. Glass, L. M. Lavidor, and S. H. Robinson. Use of cell separation and short-term culture techniques to study erythroid cell development. Blood 46:705–711 (1975).

    PubMed  CAS  Google Scholar 

  31. G. D. Roodman, J. J. Hutton, and F. J. Bollum. DNA polymerase activities during erythropoiesis. Exp. Cell Res. 91:269–278 (1975).

    Article  PubMed  CAS  Google Scholar 

  32. E. Fibach, and E. A. Rachmilewitz. Stimulation of erythroid progenitors by high concentrations of erythropoietin results in normoblasts arrested in G2 phase of the cell cycle. Exp. Hematol. 21:184–188 (2003).

    Google Scholar 

  33. M. J. Koury, and M. C. Bondurant. Control of red cell production: roles of programmed cell death (apoptosis) and erythropoietin. Transfusion 8:673–674 (1990).

    Article  Google Scholar 

  34. U. Testa. Apoptotic mechanisms in the control of erythropoiesis. Leukemia 18:1176–1199 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. L. L. Kelley, M. J. Koury, M. C. Bondurant, S. T. Koury, S. T. Sawyer, and A. Wickrema. Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities: a mechanism for controlled rates of erythrocyte production. Blood 82:2340–2352 (1993).

    PubMed  CAS  Google Scholar 

  36. J. J. Brazil, and P. Gupta. Constitutive expression of the Fas receptor and its ligand in adult human bone marrow: a regulatory feedback loop for the homeostatic control of hematopoiesis. Blood Cells Mol. Diseases 29:94–103 (2002).

    Article  Google Scholar 

  37. S. M. Jacobs-Helber, K.-H. Roh, D. Bailey, et al. Tumor necrosis-alpha expressed constitutively in erythroid cells or induced by erythropoietin has negative and stimulatory roles in normal erythropoiesis and erythroleukemia. Blood 101:524–531 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. L. Zamai, S. Burattini, F. Luchetti, et al. In vitro apoptotic cell death during erythroid differentiation. Apoptosis 9:235–246 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. C. H. Dai, J. O. Price, T. Brunner, and S. B. Krantz. Fas ligand is present on human erythroid colony-forming cells and interacts with Fas induced by interferon gamma to produce erythroid cell apoptosis. Blood 91:1235–1242 (1998).

    PubMed  CAS  Google Scholar 

  40. M. Scharte, and M. P. Fink. Red blood cell physiology in critical illness. Crit. Care Med. 31(Suppl 12):S651–S657 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. Perry C, and Soreq H. Transcriptional regulation of erythropoiesis. Fine tuning of combinatorial multi-domain elements. Eur. J. Biochem. 269:3607–3618 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. L. Zamai, P. Secchiero, S. Pierpaoli, et al. TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis. Blood 95:3716–3724 (2000).

    PubMed  CAS  Google Scholar 

  43. M. Silva, C. Richard, A. Benito, C. Sanz, I. Olalla, J. L. Fernandez-Luna. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N. Eng. J. Med. 338:564–571 (1998).

    Article  CAS  Google Scholar 

  44. K. Stahnke, S. Hecker, E. Kohne, K. M. Debatin. CD95 (APO-1/FAS)-mediated apoptosis in cytokine-activated hematopoietic cells. Exp. Hematol. 26:844–850 (1998).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in its entirety by Centocor, a wholly owned subsidiary of Johnson & Johnson, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Bugelski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugelski, P.J., Nesspor, T., Volk, A. et al. Pharmacodynamics of Recombinant Human Erythropoietin in Murine Bone Marrow. Pharm Res 25, 369–378 (2008). https://doi.org/10.1007/s11095-007-9372-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9372-7

Key words

Navigation