Skip to main content
Log in

Elucidating the Role of Dose in the Biopharmaceutics Classification of Drugs: The Concepts of Critical Dose, Effective In Vivo Solubility, and Dose-Dependent BCS

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a dose dependent version of BCS and identify a critical dose after which the amount absorbed is independent from the dose.

Methods

We utilized a mathematical model of drug absorption in order to produce simulations of the fraction of dose absorbed (F) and the amount absorbed as function of the dose for the various classes of BCS and the marginal cases in between classes.

Results

Simulations based on the mathematical model of F versus dose produced patterns of a constant F throughout a wide range of doses for drugs of Classes I, II and III, justifying biowaiver claim. For Classes I and III the pattern of a constant F stops at a critical dose Dosecr after which the amount of drug absorbed, is independent from the dose. For doses higher than Dosecr, Class I drugs become Class II and Class III drugs become Class IV. Dosecr was used to define an in vivo effective solubility as Seff = Dosecr/250 ml. Literature data were used to support our simulation results.

Conclusions

A new biopharmaceutic classification of drugs is proposed, based on F, separating drugs into three regions, taking into account the dose, and Dosecr, while the regions for claiming biowaiver are clearly defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dressman JB, Amidon GL, Fleisher D. Absorption potential: estimating the fraction absorbed for orally administered compounds. J Pharm Sci. 1985;74(5):588–9.

    Article  PubMed  CAS  Google Scholar 

  2. Macheras PE, Symillides MY. Toward a quantitative approach for the prediction of the fraction of dose absorbed using the absorption potential concept. Biopharm Drug Dispos. 1989;10(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson KC, Swindell AC. Guidance in the setting of drug particle size specifications to minimize variability in absorption. Pharm Res. 1996;13:1795–8.

    Article  PubMed  CAS  Google Scholar 

  4. Yu LX. An integrated model for determining causes of poor oral drug absorption. Pharm Res. 1999;16:1883–7.

    Article  PubMed  CAS  Google Scholar 

  5. Takano R, Kataoka M, Yamashita S. Integrating drug permeability with dissolution profile to develop IVIVC. Biopharm Drug Disp. 2012;doi:10.1002/bdd.1792.

  6. Amidon G, Lennarnas H, Shah V, Crison J. A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–29.

    Article  PubMed  CAS  Google Scholar 

  7. Guidance for Industry. Waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a biopharmaceutics classification system. Washington, D.C.: CDER/FDA; 2000.

  8. Yazdanian M, Briggs K, Jankovsky C, Hawi A. The "high solubility" definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs. Pharm Res. 2004;21(2):293–9.

    Google Scholar 

  9. Rinaki E, Dokoumetzidis A, Valsami G, Macheras P. Identification of biowaivers among Class II drugs: theoretical justification and practical examples. Pharm Res. 2004;21(9):1567–72.

    Article  PubMed  CAS  Google Scholar 

  10. Rinaki E, Valsami G, Macheras P. Quantitative biopharmaceutics classification system: the central role of dose/solubility ratio. Pharm Res. 2003;20(12):1917–25.

    Article  PubMed  CAS  Google Scholar 

  11. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.

    Article  PubMed  CAS  Google Scholar 

  12. EMA (European Medicines Agency). Committee for Medicinal Products for Human Use, CHMP. Guideline on the Investigation of Bioequivalence, London. 2010.

  13. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519–47.

    Article  PubMed  CAS  Google Scholar 

  14. Broccatelli F, Cruciani G, Benet LZ, Oprea TI. BDDCS Class prediction for new molecular entities. Mol Pharm. 2012;9(3):570–80.

    Google Scholar 

  15. Oh DM, Curl RL, Amidon GL. Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: a mathematical model. Pharm Res. 1993;10(2):264–70.

    Article  PubMed  CAS  Google Scholar 

  16. Yu LX, Crison JR, Amidon GL. Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int J Pharm. 1996;140(1):111–8.

    Google Scholar 

  17. Benet LZ. Predicting drug disposition via application of a Biopharmaceutics Drug Disposition Classification System. Basic Clin Pharmacol Toxicol. 2010;106(3):162–7.

    Article  PubMed  CAS  Google Scholar 

  18. Benet LZ, Larregieu CA. The FDA should eliminate the ambiguities in the current BCS biowaiver guidance and make public the drugs for which BCS biowaivers have been granted. Clin Pharmacol Ther. 2010;88(3):405–7.

    Article  PubMed  CAS  Google Scholar 

  19. Macheras P, Argyrakis P. Gastrointestinal drug absorption: is it time to consider heterogeneity as well as homogeneity? Pharm Res. 1997;14(7):842–7.

    Article  PubMed  CAS  Google Scholar 

  20. Dokoumetzidis A, Macheras P. IVIVC of controlled release formulations: physiological-dynamical reasons for their failure. J Control Release. 2008;129(2):76–8.

    Article  PubMed  CAS  Google Scholar 

  21. GastroPlus™ Simulation Plus inc. Available from: http://www.simulations-plus.com/Products.aspx?grpID=3&cID=16&pID=11.

  22. SimCyp®, Population-based pharmacokinetic modeling and simulation. Available from: http://www.simcyp.com.

  23. PK-Sim® Available from: http://www.systems-biology.com/products/pk-sim.html.

  24. Wuelfing WP, Kwong E, Higgins J. Identification of suitable formulations for high dose oral studies in rats using in vitro solubility measurements, the maximum absorbable dose model, and historical data sets. Mol Pharm. 2012;7;9(5):1163-74.

    Google Scholar 

  25. Ding X, Rose JP, Van Gelder J. Developability assessment of clinical drug products with maximum absorbable doses. Int J Pharm. 2012;427(2):260–9.

    Article  PubMed  CAS  Google Scholar 

  26. Abu-Diak OA, Jones DS, Andrews GP. Understanding the performance of melt-extruded poly(ethylene oxide)–bicalutamide solid dispersions: characterisation of microstructural properties using thermal, spectroscopic and drug release methods. J Pharm Sci. 2012;101(1):200–13.

    Article  PubMed  CAS  Google Scholar 

  27. Cockshott ID, Oliver SD, Young JJ, et al. The effect of food on the pharmacokinetics of the bicalutamide (“Casodex”) enantiomers. Biopharm Drug Disp. 1997;18(6):499–507.

    Article  CAS  Google Scholar 

  28. Cockshott ID. Bicalutamide. Clinical pharmacokinetics and metabolism. Clin Pharmacok. 2004;43(13):855–78.

    Article  CAS  Google Scholar 

  29. Willis JV, Kendall MJ, Flinn RM, Thornhill DP, Welling PG. The pharmacokinetics of diclofenac sodium following intravenous and oral administration. Eur J Clin Pharmacol. 1979;16(6):405–10.

    Article  PubMed  CAS  Google Scholar 

  30. Leucuţa A, Vlase L, Farcau D, Nanulescu M. No effect of short term ranitidine intake on diclofenac pharmacokinetics. Rom J Gastroenterol. 2004;13(4):306–8.

    PubMed  Google Scholar 

  31. Hinz B, Hug AM, Fotopoulos G, Gold MS. Bioequivalence study of low-dose diclofenac potassium tablet formulations. Int J Clin Pharmacol Ther. 2009;47(10):643–8.

    PubMed  CAS  Google Scholar 

  32. De Bernardi di Valserra M, Feletti F, Bertè F, Nazzari M, Cenedese A, Cornelli U. Lack of effect of a single-dose of sulglicotide on the bioavailability of diclofenac. Eur J Clin Pharmacol. 1988;34(2):211–2.

  33. Biasia G, Canova N, Palazzini E, Marcolongo R. Comparative pharmacokinetic study of a single dose of two prolonged-release formulations of diclofenac in healthy subjects. Current Ther Res. 1998;59(1):785–92.

    Article  Google Scholar 

  34. Llinàs A, Burley JC, Box KJ, Glen RC, Goodman JM. Diclofenac solubility: independent determination of the intrinsic solubility of three crystal forms. Med Chem. 2007;50(5):979–83.

    Article  Google Scholar 

  35. Shohin I, Kulinich J, Ramenskaya GV, Vasilenko GF. Evaluation of in vitro equivalence for drugs containing BCS class II compound ketoprofen. Dissol Tech. 2011;18:26–9.

    CAS  Google Scholar 

  36. Geisslinger G, Menzel S, Wissel K, Brune K. Pharmacokinetics of ketoprofen enantiomers after different doses of the racemate. Br J Clin Pharmacol. 1995;40:73–5.

    Article  PubMed  CAS  Google Scholar 

  37. Jamali F, Brocks DR. Clinical pharmacokinetics of ketoprofen and its enantiomers. Clin Pharmacokinet. 1990;19(3):197–217.

    Article  PubMed  CAS  Google Scholar 

  38. Papadopoulou V, Valsami G, Dokoumetzidis A, Macheras P. Biopharmaceutics classification systems for new molecular entities (BCS-NMEs) and marketed drugs (BCS-MD): theoretical basis and practical examples. Int J Pharm. 2008;361:70–7.

    Article  PubMed  CAS  Google Scholar 

  39. Weitschies W, Wedemeyer RS, Kosch O, Fach K, Nagel S, Söderlind E, Trahms L, Abrahamsson B, Mönnikes H. Impact of the intragastric location of extended release tablets on food interactions. J Control Release. 2005;108(2–3):375–85.

    Article  PubMed  CAS  Google Scholar 

  40. Macheras P, Koupparis M, Antimisiaris S. Drug binding and solubility in milk. Pharm Res. 1990;7(5):537–41.

    Article  PubMed  CAS  Google Scholar 

  41. Galia E, Nicolaides E, Hoerter D, Loebenberg R, Reppas C, Dressman J. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res. 1998;15(5):698–705.

    Article  PubMed  CAS  Google Scholar 

  42. Charkoftaki G, Kytariolos J, Macheras P. Novel milk-based oral formulations: proof of concept. Int J Pharm. 2010;390(2):150–9.

    Article  PubMed  CAS  Google Scholar 

  43. Kalantzi L, Persson E, Polentarutti B, Abrahamsson B, Goumas K, Dressman J, Reppas C. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 2006;23(1):1373–81.

    Article  PubMed  CAS  Google Scholar 

  44. Brouwers J, Tack J, Augustijns P. In vitro behavior of a phosphate ester prodrug of amprenavir in human intestinal fluids and in the Caco-2 system: Illustration of intraluminal supersaturation. Int J Pharm. 2007;336(2):302–9.

    Article  PubMed  CAS  Google Scholar 

  45. Clarysse S, Psachoulias D, Brouwers J, Tack J, Annaert P, Duchateau G, Reppas C, Augustijns P. Postprandial changes in solubilizing capacity of human intestinal fluids for BCS Class II drugs. Pharm Res. 2009;26(6):1456–66.

    Article  PubMed  CAS  Google Scholar 

  46. Potthast H, Dressman JB, Junginger HE, Midha KK, Oeser H, Shah VP, Vogelpoel H, Bardens DM. Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen. J Pharm Sci. 2005;94(10):2121–31.

    Article  PubMed  CAS  Google Scholar 

  47. Jantratid E, Prakongpan S, Dressman JB, Amidon GL, Junginger HE, Midha KK, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: cimetidine. J Pharm Sci. 2006;95(5):974–84.

    Article  PubMed  CAS  Google Scholar 

  48. Chuasuwan B, Binjedoh V, Polli JE, Zhang H, Amidon GL, Junginger HE, Shah MKK, et al. Biowaiver monographs for immediate release solid oral dosage forms: diclofenac sodium and diclofenac potassium. J Pharm Sci. 2009;98(4):1206–19.

    Article  PubMed  CAS  Google Scholar 

  49. Becker C, Dressman JB, Junginger HE, Kopp S, Midha KK, Shah VP, Stavchansky S. Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: rifampicin. J Pharm Sci. 2009;98(7):2252–67.

    Article  PubMed  CAS  Google Scholar 

  50. Bookstaver BP, Miller AD, Rudisill CN, Norris B. Intravenous ibuprofen: the first injectable product for the treatment of pain and fever. J Pain Res. 2010;3:67–79.

    Article  PubMed  CAS  Google Scholar 

  51. Gillespie WR, DiSanto AR, Monovich RE, Albert KS. Relative bioavailability of commercially available ibuprofen oral dosage forms in humans. J Pharm Sci. 1982;71(9):1034–8.

    Article  PubMed  CAS  Google Scholar 

  52. Evans AM, Nation RL, Sansom LN, Bochner F, Somogyi AA. The relationship between the pharmacokinetics of ibuprofen enantiomers and the dose of racemic ibuprofen in humans. Biopharm Drug Dispos. 1990;11(6):507–18.

    Article  PubMed  CAS  Google Scholar 

  53. Potthast H, Dressman JB, Junginger HE, Midha KK, Oeser H, Shah VP et al. Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen. J Pharm Sci. 2005;94(10):2121–2131.33.

    Google Scholar 

  54. Henwood SQ, de Villiers MM, Liebenberg W, Lötter AP. Solubility and dissolution properties of generic rifampicin raw materials. Drug Dev Ind Pharm. 2000;26(4):403–8.

    Article  PubMed  CAS  Google Scholar 

  55. Pähkla R, Lambert J, Ansko P, Winstanley P, Davies PD, Kiivet RA. Comparative bioavailability of three different preparations of rifampicin. J Clin Pharm Ther. 1999;24(3):219–25.

    Article  PubMed  Google Scholar 

  56. Chik Z, Basu RC, Pendek R, Lee TC, Mohamed Z. A bioequivalence comparison of two formulations of rifampicin (300- vs 150-mg capsules): An open-label, randomized, two-treatment, two-way crossover study in healthy volunteers. Clin Ther. 2010;32(10):1822–31.

    Article  PubMed  CAS  Google Scholar 

  57. Rafiq S, Iqbal T, Jamil A, Khan FH. Pharmacokinetic studies of rifampicin in healthy volunteers and tuberculosis patients. Int J Agric Biol. 2010;12:391–5.

    CAS  Google Scholar 

  58. Ruslami R, Nijland MJH, Alisjahbanaa B, Parwati I, van Crevel R, Rob AE. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2007;51(7):2546–51.

    Article  PubMed  CAS  Google Scholar 

  59. He BX, Shi L, Qiu J, Zeng XH, Tao L, Li R, Hong CJ, Gu XL, Dong FY, Yang L, Zhao SJ. Quantitative determination of atorvastatin and ortho-hydroxy atorvastatin in human plasma by liquid chromatography tandem mass spectrometry and pharmacokinetic evaluation. Methods Find Exp Clin Pharmacol. 2010;32(7):481–7.

    Article  PubMed  CAS  Google Scholar 

  60. Liu YM, Pu HH, Liu GY, Jia JY, Weng LP, Xu RJ, Li GX, Wang W, Zhang MQ, Lu C, Yu C. Pharmacokinetics and bioequivalence evaluation of two different atorvastatin calcium 10-mg tablets: A single-dose, randomized-sequence, open-label, two-period crossover study in healthy fasted Chinese adult males. Clin Ther. 2010;32(7):1396–407.

    Article  PubMed  CAS  Google Scholar 

  61. Rao N, Dvorchik B, Sussman N, Wang H, Yamamoto K, Mori A, Uchimura T, Chaikin P. A study of the pharmacokinetic interaction of istradefylline, a novel therapeutic for Parkinson's disease, and atorvastatin. J Clin Pharmacol. 2008;48(9):1092–8.

    Article  PubMed  CAS  Google Scholar 

  62. Ando H, Tsuruoka S, Yanagihara H, Sugimoto K, Miyata M, Yamazoe Y, Takamura T, Kaneko S, Fujimura A. Effects of grapefruit juice on the pharmacokinetics of pitavastatin and atorvastatin. Br J Clin Pharmacol. 2005;60(5):494–7.

    Article  PubMed  CAS  Google Scholar 

  63. Arunkumar N, Venkateskumar K, Deecaraman M, Rani C, Mohanraj KP. Preparation and solid state characterization of atorvastatin nanosuspensions for enhanced solubility and dissolution. Int J PharmTech Research. 2009;1(4):1725–30.

    CAS  Google Scholar 

  64. Faasen F, Vromans H. Biowaivers for oral immediate-release products. Implications of linear pharmacokinetics. Clin Pharmacokinet. 2004;43(15):1117–26.

    Article  Google Scholar 

  65. Szpunar GJ, Albert KS, Bole GG, Dreyfus JN, Lockwood GF, Wagner JG. Pharmacokinetics of flubiprofen in man. I. Area/dose relationships. Biopharm Drug Dispos. 1987;8(3):273–83.

    Article  PubMed  CAS  Google Scholar 

  66. Nash JF, Bechtol LD, Bunde CA, Bopp RJ, Farid KZ, Spradlin CT. Linear pharmacokinetics of orally administered fenoprofen calcium. J Pharm Sci. 1979;68(9):1087–90.

    Article  PubMed  CAS  Google Scholar 

  67. McAllister WA, Winfield CR, Collins JV. Pharmacokinetics of prednisolone in normal and asthmatic subjects in relation to dose. Eur J Clin Pharmacol. 1981;20(2):141–5.

    Article  PubMed  CAS  Google Scholar 

  68. Bauer-Brandl A. Polymorphic transitions of cimetidine during manufacture of solid dosage forms. Int J Pharmaceutics. 1996;140(2):195–206.

    Article  CAS  Google Scholar 

  69. Grahnén A, Bahr C, Lindström B, Rosén A. Bioavailability and pharmacokinetics of cimetidine. Eur J Clin Pharmacol. 1979;16(5):335–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos Macheras.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charkoftaki, G., Dokoumetzidis, A., Valsami, G. et al. Elucidating the Role of Dose in the Biopharmaceutics Classification of Drugs: The Concepts of Critical Dose, Effective In Vivo Solubility, and Dose-Dependent BCS. Pharm Res 29, 3188–3198 (2012). https://doi.org/10.1007/s11095-012-0815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0815-4

KEY WORDS

Navigation