Skip to main content

Advertisement

Log in

Computational Prediction of CNS Drug Exposure Based on a Novel In Vivo Dataset

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a computational model for predicting CNS drug exposure using a novel in vivo dataset.

Methods

The brain-to-plasma (B:P) ratio of 43 diverse compounds was assessed following intravenous administration to Swiss Outbred mice. B:P ratios were subjected to PLS modeling using calculated molecular descriptors. The obtained results were transferred to a qualitative setting in which compounds predicted to have a B:P ratio > 0.3 were sorted as high CNS exposure compounds and those below this value were sorted as low CNS exposure compounds. The model was challenged with an external test set consisting of 251 compounds for which semi-quantitative values of CNS exposure were available in the literature.

Results

The dataset ranged more than 1700-fold in B:P ratio, with 16 and 27 compounds being sorted as low and high CNS exposure drugs, respectively. The model was a one principal component model based on five descriptors reflecting molecular shape, electronegativity, polarisability and charge transfer, and allowed 74% of the compounds in the training set and 76% of the test set to be predicted correctly.

Conclusion

A qualitative computational model has been developed which accurately classifies compounds as being high or low CNS exposure drugs based on rapidly calculated molecular descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967;34:207–17.

    Article  PubMed  CAS  Google Scholar 

  2. Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969;40:648–77.

    Article  PubMed  CAS  Google Scholar 

  3. Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther. 2009;123:80–104.

    Article  PubMed  CAS  Google Scholar 

  4. Ghersi-Egea JF, Leininger-Muller B, Cecchelli R, Fenstermacher JD. Blood-brain interfaces: relevance to cerebral drug metabolism. Toxicol Lett. 1995;82–83:645–53.

    Article  PubMed  Google Scholar 

  5. Pardridge WM. Crossing the blood-brain barrier: are we getting it right? Drug Discov Today. 2001;6:1–2.

    Article  PubMed  Google Scholar 

  6. Pardridge WM. William Pardridge discusses the lack of BBB research. Interview by Rebecca N. Lawrence. Drug Discov Today. 2002;7:223–6.

    Article  PubMed  Google Scholar 

  7. Bickel U. How to measure drug transport across the blood-brain barrier. NeuroRx. 2005;2:15–26.

    Article  PubMed  Google Scholar 

  8. Gumbleton M, Audus KL. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J Pharm Sci. 2001;90:1681–98.

    Article  PubMed  CAS  Google Scholar 

  9. Nicolazzo JA, Charman SA, Charman WN. Methods to assess drug permeability across the blood-brain barrier. J Pharm Pharmacol. 2006;58:281–93.

    Article  PubMed  CAS  Google Scholar 

  10. Van Dorpe S, Bronselaer A, Nielandt J, Stalmans S, Wynendaele E, Audenaert K, et al. Brainpeps: the blood-brain barrier peptide database. Brain Struct Funct. In press; (2011).

  11. Kerns EH, Di L. Blood-brain barrier methods. Drug-like properties: Concepts, structure design and methods from ADME to toxicity optimization. Burlington: Academic; 2008. p. 311–28.

    Google Scholar 

  12. Clark DE. In silico prediction of blood-brain barrier permeation. Drug Discov Today. 2003;8:927–33.

    Article  PubMed  CAS  Google Scholar 

  13. Goodwin JT, Clark DE. In silico predictions of blood-brain barrier penetration: considerations to “keep in mind”. J Pharmacol Exp Ther. 2005;315:477–83.

    Article  PubMed  CAS  Google Scholar 

  14. Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980;23:682–4.

    Article  PubMed  CAS  Google Scholar 

  15. Liu X, Tu M, Kelly RS, Chen C, Smith BJ. Development of a computational approach to predict blood-brain barrier permeability. Drug Metab Dispos. 2004;32:132–9.

    Article  PubMed  CAS  Google Scholar 

  16. Young RC, Mitchell RC, Brown TH, Ganellin CR, Griffiths R, Jones M, et al. Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J Med Chem. 1988;31:656–71.

    Article  PubMed  CAS  Google Scholar 

  17. Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res. 1999;16:1514–9.

    Article  PubMed  CAS  Google Scholar 

  18. Osterberg T, Norinder U. Prediction of polar surface area and drug transport processes using simple parameters and PLS statistics. J Chem Inf Comput Sci. 2000;40:1408–11.

    Article  PubMed  CAS  Google Scholar 

  19. van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target. 1998;6:151–65.

    Article  PubMed  Google Scholar 

  20. Ajay A, Bemis GW, Murcko MA. Designing libraries with CNS activity. J Med Chem. 1999;42:4942–51.

    Article  PubMed  CAS  Google Scholar 

  21. Garg P, Verma J. In silico prediction of blood brain barrier permeability: an artificial neural network model. J Chem Inf Model. 2006;46:289–97.

    Article  PubMed  CAS  Google Scholar 

  22. Takasato Y, Rapoport SI, Smith QR. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol. 1984;247:H484–93.

    PubMed  CAS  Google Scholar 

  23. Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, et al. In vitro models for the blood-brain barrier. Toxicol In Vitro. 2005;19:299–334.

    Article  PubMed  CAS  Google Scholar 

  24. Raub TJ, Lutzke BS, Andrus PK, Sawada GA, Staton BA. Early preclinical evaluation of brain exposure in support of hit identification and lead optimization. In: Borchardt RT, Kerns EH, Hageman M, Thakker DR, Stevens JL, editors. Optimizing the “Drug-Like” properties of leads in drug discovery. Hoboken: Spinger; 2006. p. 355–410.

    Chapter  Google Scholar 

  25. Jin L, Li J, Nation RN, Nicolazzo JA. Brain penetration of colistin in mice assessed by a novel high-performance liquid chromatographic technique. Antimicrob Agents Chemother. 2009;53:4247–51.

    Article  PubMed  CAS  Google Scholar 

  26. Kooijmans SA, Senyschyn D, Mezhiselvam MM, Morizzi J, Charman SA, Weksler B, et al. The involvement of a Na+ and Cl–dependent transporter in the brain uptake of amantadine and rimantadine. Mol Pharmaceut. 2012;9:883–93.

    Article  CAS  Google Scholar 

  27. Oldendorf WH. Lipid solubility and drug penetration of the blood brain barrier. Proc Soc Exp Biol Med. 1974;147:813–5.

    PubMed  CAS  Google Scholar 

  28. Smith QR, Momma S, Aoyagi M, Rapoport SI. Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem. 1987;49:1651–8.

    Article  PubMed  CAS  Google Scholar 

  29. Oldendorf WH, Szabo J. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am J Physiol. 1976;230:94–8.

    PubMed  CAS  Google Scholar 

  30. Augustijns P, D’Hulst A, Van Daele J, Kinget R. Transport of artemisinin and sodium artesunate in Caco-2 intestinal epithelial cells. J Pharm Sci. 1996;85:577–679.

    Article  PubMed  CAS  Google Scholar 

  31. Hamilton JA, Hillard CJ, Spector AA, Watkins PA. Brain uptake and utilization of fatty acids, lipids and lipoproteins: application to neurological disorders. J Mol Neurosci. 2007;33:2–11.

    Article  PubMed  CAS  Google Scholar 

  32. Richieri GV, Kleinfeld AM. Unbound free fatty acid levels in human serum. J Lipid Res. 1995;36:229–40.

    PubMed  CAS  Google Scholar 

  33. Nakanishi T, Hatanaka T, Huang W, Prasad PD, Leibach FH, Ganapathy ME, et al. Na+- and Cl–coupled active transport of carnitine by the amino acid transporter ATB0,+ from mouse colon expressed in HRPE cells and Xenopus oocytes. J Physiol. 2001;532:297–304.

    Article  PubMed  CAS  Google Scholar 

  34. Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem. 1998;273:20378–82.

    Article  PubMed  CAS  Google Scholar 

  35. Do TM, Ouellet M, Calon F, Chimini G, Chacun H, Farinotti R, et al. Direct evidence of abca1-mediated efflux of cholesterol at the mouse blood-brain barrier. Mol Cell Biochem. 2011;357:397–404.

    Article  PubMed  CAS  Google Scholar 

  36. Drion N, Lemaire M, Lefauconnier JM, Scherrmann JM. Role of P-glycoprotein in the blood-brain transport of colchicine and vinblastine. J Neurochem. 1996;67:1688–93.

    Article  PubMed  CAS  Google Scholar 

  37. Jin L, Li J, Nation RN, Nicolazzo JA. The impact of P-glycoprotein inhibition and lipopolysaccharide administration on the blood-brain barrier transport of colistin in mice. Antimicrob Agents Chemother. 2011;55:502–7.

    Article  PubMed  CAS  Google Scholar 

  38. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest. 1995;96:1698–705.

    Article  PubMed  CAS  Google Scholar 

  39. Oldendorf WH. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am J Physiol. 1973;224:1450–3.

    PubMed  CAS  Google Scholar 

  40. Dagenais C, Rousselle C, Pollack GM, Scherrmann JM. Development of an in situ mouse brain perfusion model and its application to mdr1a P-glycoprotein-deficient mice. J Cereb Blood Flow Metab. 2000;20:381–6.

    Article  PubMed  CAS  Google Scholar 

  41. Crowe A, Ilett KF, Karunajeewa HA, Batty KT, Davis TM. Role of P glycoprotein in absorption of novel antimalarial drugs. Antimicrob Agents Chemother. 2006;50:3504–6.

    Article  PubMed  CAS  Google Scholar 

  42. Bertler A, Falck B, Rosengren E. The direct demonstration of a barrier mechanism in the brain capillaries. Acta Pharmacol Toxicol. 1963;20:317–21.

    Article  CAS  Google Scholar 

  43. Pardridge WM, Mietus LJ. Transport of steroid hormones through the rat blood-brain barrier. J Clin Invest. 1979;64:145–54.

    Article  PubMed  CAS  Google Scholar 

  44. Spector R. Hypoxanthine transport through the blood-brain barrier. Neurochem Res. 1987;12:791–6.

    Article  PubMed  CAS  Google Scholar 

  45. Parepally JM, Mandula H, Smith QR. Brain uptake of nonsteroidal anti-inflammatory drugs: ibuprofen, flurbiprofen, and indomethacin. Pharm Res. 2006;23:873–81.

    Article  PubMed  CAS  Google Scholar 

  46. Oldendorf WH. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol. 1971;221:1629–39.

    PubMed  CAS  Google Scholar 

  47. Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E, et al. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos. 2005;33:165–74.

    Article  PubMed  CAS  Google Scholar 

  48. Borgå O, Borgå B. Serum protein binding of nonsteroidal antiinflammatory drugs: a comparative study. J Pharmacokinet Biopharm. 1997;25:63–77.

    PubMed  Google Scholar 

  49. Kurihara A, Suzuki H, Sawada Y, Sugiyama Y, Iga T, Hanano M. Uptake of propranolol by microvessels isolated from bovine brain. J Pharm Sci. 1987;76:759–64.

    Article  PubMed  CAS  Google Scholar 

  50. Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest. 1998;101:289–94.

    Article  PubMed  CAS  Google Scholar 

  51. Shah IG, Parsons DL. Human albumin binding of tamoxifen in the presence of a perfluorochemical erythrocyte substitute. J Pharm Pharmacol. 1991;43:790–3.

    Article  PubMed  CAS  Google Scholar 

  52. Gibbs JP, Adeyeye MC, Yang Z, Shen DD. Valproic acid uptake by bovine brain microvessel endothelial cells: role of active efflux transport. Epilepsy Res. 2004;58:53–66.

    Article  PubMed  CAS  Google Scholar 

  53. Pardridge WM. CNS drug design based on principles of blood-brain barrier transport. J Neurochem. 1998;70:1781–92.

    Article  PubMed  CAS  Google Scholar 

  54. Bergström CA, Norinder U, Luthman K, Artursson P. Molecular descriptors influencing melting point and their role in classification of solid drugs. J Chem Inf Comput Sci. 2003;43:1177–85.

    Article  PubMed  Google Scholar 

  55. Fridén M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, et al. Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem. 2009;52:6233–43.

    Article  PubMed  Google Scholar 

  56. Chen H, Winiwarter S, Fridén M, Antonsson M, Engkvist O. In silico prediction of unbound brain-to-plasma concentration ratio using machine learning algorithms. J Mol Graph Model. 2011;29:985–95.

    Article  PubMed  CAS  Google Scholar 

  57. Fischer H, Gottschlich R, Seelig A. Blood-brain barrier permeation: molecular parameters governing passive diffusion. J Membr Biol. 1998;165:201–11.

    Article  PubMed  CAS  Google Scholar 

  58. Dearden JC, Al-Noobi A, Scott AC, Thomson SA. QSAR studies on P-glycoprotein-regulated multidrug resistance and on its reversal by phenothiazines. SAR QSAR Environ Res. 2003;14:447–54.

    Article  PubMed  CAS  Google Scholar 

  59. Seelig A. The role of size and charge for blood-brain barrier permeation of drugs and fatty acids. J Mol Neurosci. 2007;33:32–41.

    Article  PubMed  CAS  Google Scholar 

  60. Lobell M, Sivarajah V. In silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pKa and AlogP98 values. Mol Divers. 2003;7:69–87.

    Article  PubMed  CAS  Google Scholar 

  61. Bergström CA, Strafford M, Lazorova L, Avdeef A, Luthman K, Artursson P. Absorption classification of oral drugs based on molecular surface properties. J Med Chem. 2003;46:558–70.

    Article  PubMed  Google Scholar 

  62. Kortagere S, Chekmarev D, Welsh WJ, Ekins S. New predictive models for blood-brain barrier permeability of drug-like molecules. Pharm Res. 2008;25:1836–45.

    Article  PubMed  CAS  Google Scholar 

  63. Muehlbacher M, Spitzer GM, Liedl KR, Kornhuber J. Qualitative prediction of blood-brain barrier permeability on a large and refined dataset. J Comput Aided Mol Des. 2011;25:1095–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors would like to thank Dr. Thomas J. Raub for his assistance and guidance in development and validation of the mouse brain uptake assay. We thank SimulationsPlus (Lancaster, CA) for providing the Department of Pharmacy, Uppsala University, with a reference site license for the software ADMET Predictor. Financial support from the Swedish Agency for Innovation Systems (Grant 2010-00966) for Christel Bergström’s Marie Curie Fellowship at Monash University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Nicolazzo.

Electronic Supplementary Material

The supporting information contains information relating to the chemical space of training set and its applicability for prediction of the test set (Figure 1), the literature used to compile the test set (Table 1), information relating to the specific activity and site of radiolabel for the probe compounds (Table 2), and results of the CNS exposure predictions of the external test set (Table 3).

ESM 1

(DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergström, C.A.S., Charman, S.A. & Nicolazzo, J.A. Computational Prediction of CNS Drug Exposure Based on a Novel In Vivo Dataset. Pharm Res 29, 3131–3142 (2012). https://doi.org/10.1007/s11095-012-0806-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0806-5

Key Words

Navigation