Skip to main content

Advertisement

Log in

Blood-Brain Barrier Permeation: Molecular Parameters Governing Passive Diffusion

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract.

53 compounds with clinically established ability to cross or not to cross the blood-brain barrier by passive diffusion were characterized by means of surface activity measurements in terms of three parameters, i.e., the air-water partition coefficient, K aw , the critical micelle concentration, CMC D , and the cross-sectional area, A D . A three-dimensional plot in which the surface area, A D , is plotted as a function of K −1 aw and CMC D shows essentially three groups of compounds: (i) very hydrophobic compounds with large air-water partition coefficients and large cross-sectional areas, A D > 80 Å2 which do not cross the blood-brain barrier, (ii) compounds with lower air-water partition coefficients and an average cross-sectional area, A D ≅ 50 Å2 which easily cross the blood-brain barrier, and (iii) hydrophilic compounds with low air-water partition coefficients (A D < 50 Å2) which cross the blood-brain barrier only if applied at high concentrations. It was shown that the lipid membrane-water partition coefficient, K lw , measured previously, can be correlated with the air-water partition coefficient if the additional work against the internal lateral bilayer pressure, π bi = 34 ± 4 mN/m is taken into account. The partitioning into anisotropic lipid membranes decreases exponentially with increasing cross-sectional areas, A D , according to K lw =const. K aw exp(−A D π bi /kT) where kT is the thermal energy. The cross-sectional area of the molecule oriented at a hydrophilic-hydrophobic interface is thus the main determinant for membrane permeation provided the molecule is surface active and has a pK a > 4 for acids and a pK a < 10 for bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 7 April 1998/Revised: 25 June 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, H., Gottschlich, R. & Seelig, A. Blood-Brain Barrier Permeation: Molecular Parameters Governing Passive Diffusion. J. Membrane Biol. 165, 201–211 (1998). https://doi.org/10.1007/s002329900434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002329900434

Navigation