Skip to main content

Advertisement

Log in

Stability Influences the Biodistribution, Toxicity, and Anti-tumor Activity of Doxorubicin Encapsulated in PEG-PE Micelles in Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the influences of stability of doxorubicin (DOX) retained in PEG-PE/HSPC micelles on its biodistribution, toxicity and anti-tumor activity in mice.

Methods

We incorporated HSPC into PEG-PE micelles at various molar ratios by a self-assembly procedure. Micelles were characterized by dynamic light scattering, transmission electron microscope, atomic force microscopy. Agarose gel electrophoresis assay was used to detect stable retention of DOX in micellar preparations. Biodistribution, toxicity and anti-tumor activity of doxorubicin encapsulated in PEG-PE/HSPC micelles in mice were investigated.

Results

HSPC incorporation not only changed the size and shape of PEG-PE micelles, but also decreased the ability of DOX stable retained in PEG-PE micelles, resulting in a great discrepancy in biodistribution, toxicity and anti-tumor activity among micellar DOX preparations. DOX encapsulated in PEG-PE micelles (M1-DOX), with narrower size distribution and greater stability, demonstrated better cytotoxicity in vitro and low systemic toxicity with superior anti-tumor metastasis activity in vivo.

Conclusions

Encapsulation of DOX into PEG-PE micelles showed the best therapeutic activity and lowest systemic toxicity compared to other HSPC-incorporated PEG-PE micellar preparations. Stable retention of drugs within micelles is important and is determined by compatibility between drugs and polymer blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82.

    Article  CAS  Google Scholar 

  2. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  PubMed  CAS  Google Scholar 

  3. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Contr Release. 2000;65:271–84.

    Article  CAS  Google Scholar 

  4. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60:1615–26.

    Article  PubMed  CAS  Google Scholar 

  5. Sawant RR, Torchilin VP. Polymeric micelles: polyethylene glycol-phosphatidylethanolamine (PEG-PE)-based micelles as an example. Meth Mol Biol. 2010;624:131–49.

    Article  CAS  Google Scholar 

  6. Nishiyama N, Morimoto Y, Jang WD, Kataoka K. Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv Drug Deliv Rev. 2009;61:327–38.

    Article  PubMed  CAS  Google Scholar 

  7. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Contr Release. 2001;73:137–72.

    Article  CAS  Google Scholar 

  8. Lukyanov AN, Gao Z, Mazzola L, Torchilin VP. Polyethylene glycol-diacyllipid micelles demonstrate increased acculumation in subcutaneous tumors in mice. Pharm Res. 2002;19:1424–9.

    Article  PubMed  CAS  Google Scholar 

  9. Weissig V, Whiteman KR, Torchilin VP. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm Res. 1998;15:1552–6.

    Article  PubMed  CAS  Google Scholar 

  10. Tang N, Du G, Wang N, Liu C, Hang H, Liang W. Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin. J Natl Cancer Inst. 2007;99:1004–15.

    Article  PubMed  CAS  Google Scholar 

  11. Wang Y, Wang R, Lu X, Lu W, Zhang C, Liang W. Pegylated phospholipids-based self-assembly with water-soluble drugs. Pharm Res. 2010;27:361–70.

    Article  PubMed  CAS  Google Scholar 

  12. Rijcken CJ, Snel CJ, Schiffelers RM, van Nostrum CF, Hennink WE. Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies. Biomaterials. 2007;28:5581–93.

    Article  PubMed  CAS  Google Scholar 

  13. Yokoyama M, Fukushima S, Uehara R, Okamoto K, Kataoka K, Sakurai Y, Okano T. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Contr Release. 1998;50:79–92.

    Article  CAS  Google Scholar 

  14. Talelli M, Iman M, Varkouhi AK, Rijcken CJ, Schiffelers RM, Etrych T, et al. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials. 2010;31:7797–804.

    Article  PubMed  CAS  Google Scholar 

  15. Hristova K, Needham D. Phase behavior of a lipid/polymer-lipid mixture in aqueous medium. Macromolecules. 1995;28:991–1002.

    Article  CAS  Google Scholar 

  16. Ashok B, Arleth L, Hjelm RP, Rubinstein I, Onyüksel H. In vitro characterization of PEGlyated phospholipids micelles for improved drug solubilization: effects of PEG chain length and pc incorporation. J Pharm Sci. 2004;93:2476–87.

    Article  PubMed  CAS  Google Scholar 

  17. Arleth L, Ashok B, Onyuksel H, Thiyagarajan P, Jacob J, Hjelm RP. Detailed structure of hairy mixed micelles formed by phosphatidylcholine and PEGlyated phospholipids in aqueous media. Langmuir. 2005;21:3279–90.

    Article  PubMed  CAS  Google Scholar 

  18. Mayer LD, Bally MB, Loughrey H, Masin D, Cullis PR. Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine L1210 and P388 tumors. Cancer Res. 1990;50:575–9.

    PubMed  CAS  Google Scholar 

  19. Charrois GJ, Allen TM. Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer. Biochim Biophys Acta. 2004;1663:167–77.

    Article  PubMed  CAS  Google Scholar 

  20. Luecke RH, Ryan MP, Wosilait WD. A mathematical model and computer program for adriamycin distribution and elimination. Comput Meth Programs Biomed. 1985;20:23–31.

    Article  CAS  Google Scholar 

  21. Hershman DL, McBride RB, Eisenberger A, Tsai WY, Grann VR, Jacobson JS. Doxorubicin, cardiac risk factors, and cardiac toxicity in elderly patients with diffuse B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26:3159–65.

    Article  PubMed  CAS  Google Scholar 

  22. van Hoesel QG, Steerenberg PA, Crommelin DJ, van Oort W, Klein S, Douze JM, et al. Reduced cardiotoxicity and nephrotoxicity with preservation of antitumor activity of doxorubicin entrapped in stable liposomes in the LOU/M Wsl rat. Cancer Res. 1984;44:3698–705.

    PubMed  Google Scholar 

  23. Yagmurca M, Bas O, Mollaoglu H, Sahin O, Nacar A, Karaman O, Songur A. Protective effects of erdosteine on doxorubicin-induced hepatotoxicity in rats. Arch Med Res. 2007;38:380–5.

    Article  PubMed  CAS  Google Scholar 

  24. Injac R, Strukelj B. Recent advances in protection against doxorubicin-induced toxicity. Technol Cancer Res Treat. 2008;7:15–26.

    PubMed  CAS  Google Scholar 

  25. Bertani T, Poggi A, Pozzoni R, Delaini F, Sacchi G, Thoua Y, et al. Adriamycin-induced nephrotic syndrome in rats: sequence of pathologic events. Lab Invest. 1982;46:16–23.

    PubMed  CAS  Google Scholar 

  26. Weening JJ, Rennke HG. Glomerular permeability and polyanion in adriamycin nephrosis in the rat. Kidney Int. 1983;24:152–9.

    Article  PubMed  CAS  Google Scholar 

  27. Jaenke RS, Fajardo LF. Adriamycin-induced myocardioal lesions: report of a workshop. Am J Sur Pathol. 1977;1:55–60.

    Article  Google Scholar 

  28. Philips FS, Giladoga A, Marrouardt H, Sternberg SS, Vidal PM. Some observations on the toxicity of adriamycin (NSC-123127). Cancer Chemother Rep. 1975;59:177–81.

    Google Scholar 

  29. van Hoesel QG, Steerenberg PA, Vos JG, Hillen FC, Dormans JA. Antitumor effect, cardiotoxicity, and nephrotoxicity of doxorubicin in the IgM solid immunocytoma-bearing LOU/M/WSL rat. J Natl Cancer Inst. 1984;72:1141–50.

    PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by grants from State Key Development Plan Project (2007CB935801), the National Nature Sciences Foundation of China (30901869).

Dr Junfeng Hao of the IBP core facilities centre was gratefully thanked for her help for Histopathology and TUNEL assay.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunling Zhang or Wei Liang.

Additional information

Xiuli Wei and Yiguang Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, X., Wang, Y., Zeng, W. et al. Stability Influences the Biodistribution, Toxicity, and Anti-tumor Activity of Doxorubicin Encapsulated in PEG-PE Micelles in Mice. Pharm Res 29, 1977–1989 (2012). https://doi.org/10.1007/s11095-012-0725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0725-5

KEY WORDS

Navigation