Skip to main content
Log in

Amine-Modified Poly(Vinyl Alcohol)s as Non-viral Vectors for siRNA Delivery: Effects of the Degree of Amine Substitution on Physicochemical Properties and Knockdown Efficiency

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The objective of this study was to investigate how the degree of amine substitution of amine-modified poly(vinyl alcohol) (PVA) affects complexation of siRNA, protection of siRNA against degrading enzymes, intracellular uptake and gene silencing.

Methods

A series of DEAPA-PVA polymers with increasing amine density was synthesized by modifying the hydroxyl groups in the PVA backbone with diethylamino propylamine groups using CDI chemistry. These polymers were characterized with regard to their ability to complex and protect siRNA against RNase. Finally, their potential to mediate intracellular uptake and gene silencing in SKOV-luc cells was investigated.

Results

A good correlation between amine density and siRNA complexation as well as protection of siRNA against RNase was found. Consisting solely of tertiary amines, this class of polymer was able to mediate efficient gene silencing when approximately 30% of the hydroxyl groups in the PVA backbone were modified with diethylamino propylamine groups. Polymers with a lower amine density (up to 23%) were inefficient in gene silencing, while increasing the amine density to 48% led to non-specific knockdown effects.

Conclusion

DEAPA-PVA polymers were shown to mediate efficient gene silencing and offer a promising platform for further structural modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Howard KA. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev. 2009;61:710–20.

    Article  CAS  PubMed  Google Scholar 

  2. Waite CL, Sparks SM, Uhrich KE, Roth CM. Acetylation of PAMAM dendrimers for cellular delivery of siRNA. BMC Biotechnol. 2009;9:38–47.

    Article  PubMed  Google Scholar 

  3. Gary DJ, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release. 2007;121:64–73.

    Article  CAS  PubMed  Google Scholar 

  4. Gonzalez H, Hwang SJ, Davis ME. New class of polymers for the delivery of macromolecular therapeutics. Bioconjug Chem. 1999;10:1068–74.

    Article  CAS  PubMed  Google Scholar 

  5. Pun SH, Bellocq NC, Liu A, Jensen G, Machemer T, Quijano E, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem. 2004;15:831–40.

    Article  CAS  PubMed  Google Scholar 

  6. Gabrielson NP, Pack DW. Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions. Biomacromolecules. 2006;7:2427–35.

    Article  CAS  PubMed  Google Scholar 

  7. Yezhelyev MV, Qi L, O’Regan RM, Nie S, Gao X. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc. 2008;130:9006–12.

    Article  CAS  PubMed  Google Scholar 

  8. Zintchenko A, Philipp A, Dehshahri A, Wagner E. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem. 2008;19:1448–55.

    Article  CAS  PubMed  Google Scholar 

  9. Kong WH, Sung DK, Shim YH, Bae KH, Dubois P, Park TG, et al. Efficient intracellular siRNA delivery strategy through rapid and simple two steps mixing involving noncovalent post-PEGylation. J Control Release. 2009;138:141–7.

    Article  CAS  PubMed  Google Scholar 

  10. Chiellini E, Corti A, D’Antone S, Solaro R. Biodegradation of poly(vinyl alcohol) based materials. Prog Polym Sci. 2003;28:963–1014.

    Article  CAS  Google Scholar 

  11. Matsumura S, Tomizawa N, Toki A, Nishikawa K, Toshima K. Novel poly(vinyl alcohol)-degrading enzyme and the degradation mechanism. Macromolecules. 1999;32:7753–61.

    Article  CAS  Google Scholar 

  12. Wittmar M, Ellis JS, Morell F, Unger F, Schumacher JC, Roberts CJ, et al. Biophysical and transfection studies of an amine-modified poly(vinyl alcohol) for gene delivery. Bioconjug Chem. 2005;16:1390–8.

    Article  CAS  PubMed  Google Scholar 

  13. Xie X, Wittmar M, Kissel T. A Two-Dimensional NMR Study of Poly(vinyl (dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol). Macromolecules. 2004;37:4598–606.

    Article  CAS  Google Scholar 

  14. Torchilin VP, Weissig V. Liposomes—a practical approach. Oxford University Press; 2003.

  15. Suh J, Paik H, Hwang BK. Ionization of poly(ethylenimine) and poly(allylamine) at various pH’s. Bioorg Chem. 1994;22:318–27.

    Article  CAS  Google Scholar 

  16. Hoo C, Starostin N, West P, Mecartney M. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res. 2008;10:89–96.

    Article  CAS  Google Scholar 

  17. Domingos RF, Baalousha MA, Ju-Nam Y, Reid MM, Tufenkji N, Lead JR, et al. Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol. 2009;43:7277–84.

    Article  CAS  PubMed  Google Scholar 

  18. Zanetti-Ramos BG, Frutzen-Garcia MB, Schweitzer de Oliveira C, Pasa AA, Solid V, Borsali R. Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles. Mater Sci Eng C. 2009;29:638–40.

    Article  CAS  Google Scholar 

  19. Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. 2001;29:3882–91.

    Article  CAS  PubMed  Google Scholar 

  20. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.

    Article  CAS  PubMed  Google Scholar 

  21. Wang DA, Narang AS, Kotb M, Gaber AO, Miller DD, Kim SW, et al. Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules. 2002;3:1197–207.

    Article  CAS  PubMed  Google Scholar 

  22. Leroueil PR, Berry SA, Duthie K, Han G, Rotello VM, McNerny DQ, et al. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett. 2008;8:420–4.

    Article  CAS  PubMed  Google Scholar 

  23. Wang XL, Ramusovic S, Nguyen T, Lu ZR. Novel polymerizable surfactants with pH-sensitive amphiphilicity and cell membrane disruption for efficient siRNA delivery. Bioconjug Chem. 2007;18:2169–77.

    Article  CAS  PubMed  Google Scholar 

  24. Grayson AC, Doody AM, Putnam D. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm Res. 2006;23:1868–76.

    Article  PubMed  Google Scholar 

  25. Hassani Z, Lemkine GF, Erbacher P, Palmier K, Alfama G, Giovannangeli C, et al. Lipid-mediated siRNA delivery down-regulates exogenous gene expression in the mouse brain at picomolar levels. J Gene Med. 2005;7:198–207.

    Article  CAS  PubMed  Google Scholar 

  26. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen J, Steele TW, Merkel O, Reul R, Kissel T. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J Control Release. 2008;132:243–51.

    Article  CAS  PubMed  Google Scholar 

  28. Oster CG, Wittmar M, Bakowsky U, Kissel T. DNA nano-carriers from biodegradable cationic branched polyesters are formed by a modified solvent displacement method. J Control Release. 2006;111:371–81.

    Article  CAS  PubMed  Google Scholar 

  29. Unger F, Wittmar M, Kissel T. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(d, l-lactide-co-glycolide): effects of polymer structure on cytotoxicity. Biomaterials. 2007;28:1610–9.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang S, Zhao B, Jiang H, Wang B, Ma B. Cationic lipids and polymers mediated vectors for delivery of siRNA. J Control Release. 2007;123:1–10.

    Article  CAS  PubMed  Google Scholar 

  31. Boeckle S, von Gersdorff K, van der Piepen S, Culmsee C, Wagner E, Ogris M. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med. 2004;6:1102–11.

    Article  CAS  PubMed  Google Scholar 

  32. Lin C, Engbersen JF. Effect of chemical functionalities in poly(amido amine)s for non-viral gene transfection. J Control Release. 2008;132:267–72.

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Reineke TM. Poly(glycoamidoamine)s for gene delivery. structural effects on cellular internalization, buffering capacity, and gene expression. Bioconjug Chem. 2007;18:19–30.

    Article  CAS  PubMed  Google Scholar 

  34. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  CAS  PubMed  Google Scholar 

  35. Funhoff AM, van Nostrum CF, Koning GA, Schuurmans-Nieuwenbroek NM, Crommelin DJ, Hennink WE. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromolecules. 2004;5:32–9.

    Article  CAS  PubMed  Google Scholar 

  36. Buyens K, Meyer M, Wagner E, Demeester J, De Smedt SC, Sanders N. Monitoring the disassembly of siRNA polyplexes in serum is crucial for predicting their biological efficacy. J Control Release. 2010;141:38–41.

    Article  CAS  PubMed  Google Scholar 

  37. Merkel OM, Librizzi D, Pfestroff A, Schurrat T, Buyens K, Sanders NN, et al. Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by Fluorescence Fluctuation Spectroscopy and Single Photon Emission Computed Tomography (SPECT) imaging. J Control Release. 2009;138:148–59.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We thank Eva Mohr for her support in the cell culture lab and Cornelia Brendel (Flow Cytometry Core Facility, Department of Hematology, Oncology and Immunology, University Hospital Marburg) for generous use of the FACS. Financial support of Deutsche Forschungsgemeinschaft (DFG Forschergruppe 627) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Kissel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, J., Reul, R., Roesler, S. et al. Amine-Modified Poly(Vinyl Alcohol)s as Non-viral Vectors for siRNA Delivery: Effects of the Degree of Amine Substitution on Physicochemical Properties and Knockdown Efficiency. Pharm Res 27, 2670–2682 (2010). https://doi.org/10.1007/s11095-010-0266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0266-8

KEY WORDS

Navigation