Skip to main content

Advertisement

Log in

Enhanced Gene and siRNA Delivery by Polycation-Modified Mesoporous Silica Nanoparticles Loaded with Chloroquine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To prepare mesoporous silica-based delivery systems capable of simultaneous delivery of drugs and nucleic acids.

Methods

The surface of mesoporous silica nanoparticles (MSN) was modified with poly(ethylene glycol) (PEG) and poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA) or poly(2-(diethylamino)ethylmethacrylate) (PDEAEMA). The particles were then loaded with a lysosomotropic agent chloroquine (CQ) and complexed with plasmid DNA or siRNA. The ability of the synthesized particles to deliver combinations of CQ and nucleic acids was evaluated using luciferase plasmid DNA and siRNA targeting luciferase and GAPDH.

Results

The results show a slow partial MSN dissolution to form hollow silica nanoparticles in aqueous solution. The biological studies show that polycation-modified MSN are able to simultaneously deliver CQ with DNA and siRNA. The co-delivery of CQ and the nucleic acids leads to a significantly increased transfection and silencing activity of the complexes compared with MSN not loaded with CQ.

Conclusion

PEGylated MSN modified with polycations are promising delivery vectors for combination drug/nucleic acid therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

APTES:

3-aminopropyltriethoxysilane

CQ:

chloroquine

CTAB:

N-cetyltrimethylammonium bromide

DMEM:

Dulbecco’s modified Eagle’s medium

GAPDH:

glyceraldehyde 3-phosphate dehydrogenase

MPA:

3-mercaptopropionic acid

MPTMS:

3-mercaptopropyltrimethoxysilane

MSN:

mesoporous silica nanoparticles

PDEAEMA:

poly(2-(diethylamino)ethylmethacrylate)

PEG:

poly(ethylene glycol)

PEI:

polyethyleneimine

PDMAEMA:

poly(2-(dimethylamino)ethylmethacrylate)

PMSN:

PEG-coated MSN

TEOS:

tetraethylorthosilicate

REFERENCES

  1. Jia J, Zhu F, Ma X, Cao ZW, Li YX, Chen YZ. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 2009;8:111–28.

    Article  CAS  PubMed  Google Scholar 

  2. Yadav S, van Vlerken LE, Little SR, Amiji MM. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother Pharmacol. 2009;63:711–22.

    Article  CAS  PubMed  Google Scholar 

  3. Quist SR, Wang-Gohrke S, Kohler T, Kreienberg R, Runnebaum IB. Cooperative effect of adenoviral p53 gene therapy and standard chemotherapy in ovarian cancer cells independent of the endogenous p53 status. Cancer Gene Ther. 2004;11:547–54.

    Article  CAS  PubMed  Google Scholar 

  4. Griffith TS, Stokes B, Kucaba TA, Earel JK, VanOosten RL, Brincks EL, et al. TRAIL gene therapy: from preclinical development to clinical application. Curr Gene Ther. 2009;9:9–19.

    Article  CAS  PubMed  Google Scholar 

  5. Viitala R, Jokinen M, Tuusa S, Rosenholm JB, Jalonen H. Adjustably bioresorbable sol-gel derived SiO2 matrices for release of large biologically active molecules. J Sol Gel Sci Technol. 2005;36:147–56.

    Article  CAS  Google Scholar 

  6. Lebold T, Jung C, Michaelis J, Brauchle C. Nanostructured silica materials as drug-delivery systems for doxorubicin: single molecule and cellular studies. Nano Lett. 2009;9:2877–83.

    Article  CAS  PubMed  Google Scholar 

  7. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2:889–96.

    Article  CAS  PubMed  Google Scholar 

  8. Vivero-Escoto JL, Slowing II, Wu CW, Lin VS. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J Am Chem Soc. 2009;131:3462–3.

    Article  CAS  PubMed  Google Scholar 

  9. Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small. 2007;3:1341–6.

    Article  CAS  PubMed  Google Scholar 

  10. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, et al. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano. 2009;3:3273–86.

    Article  CAS  PubMed  Google Scholar 

  11. Radu DR, Lai C-Y, Jeftinija K, Rowe EW, Jeftinija S, Lin VS-Y. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene trasfection reagent. J Am Chem Soc. 2004;126:13216–7.

    Article  CAS  PubMed  Google Scholar 

  12. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, et al. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small. 2009;5:2673–7.

    Article  CAS  PubMed  Google Scholar 

  13. Lai C-Y, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, et al. A mesoporous silica nanosphere-based carrier system with chemically removable cds nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc. 2003;125:4451–9.

    Article  CAS  PubMed  Google Scholar 

  14. You Y-Z, Kalebaila KK, Brock SL, Oupický D. Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chem Mater. 2008;20:3354–9.

    Article  CAS  Google Scholar 

  15. Radu DR, Lai C-Y, Huang J, Shu X, and Lin VS-Y. Fine-tuning the degree of organic functionalization of mesoporous silica nanosphere materials via an interfacially designed co-condensation method. Chemical Communications 2005;1264–1266.

  16. Rosenholm JM, Linden M. Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas. Chem Mater. 2007;19:5023–34.

    Article  CAS  Google Scholar 

  17. Coradin T, Eglin D, Livage J. The silicomolybdic acid spectrophotometric method and its application to silicate/biopolymer interaction studies. Spectrosc Int J. 2004;18:567–76.

    CAS  Google Scholar 

  18. Galarneau A, Nader M, Guenneau F, Di Renzo F, Gedeon A. Understanding the stability in water of mesoporous SBA-15 and MCM-41. J Phys Chem C. 2007;111:8268–77.

    Article  CAS  Google Scholar 

  19. Finnie KS, Waller DJ, Perret FL, Krause-Heuer AM, Lin HQ, Hanna JV, et al. Biodegradability of sol-gel silica microparticles for drug delivery. J Sol-Gel Sci Technol. 2009;49:12–8.

    Article  CAS  Google Scholar 

  20. Lin Y-S, Haynes CL. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc. 2010;132:4834–42.

    Article  CAS  PubMed  Google Scholar 

  21. Jugdaohsingh R, Reffitt DM, Oldham C, Day JP, Fifield LK, Thompson RPH, et al. Oligomeric but not monomeric silica prevents aluminum absorption in humans. Am J Clin Nutr. 2000;71:944–9.

    CAS  PubMed  Google Scholar 

  22. Klause M, Rothhaar U, Bicker M, Ohling W. Dissolution of thin SiO2-coatings - characterization and evaluation. J Non-Cryst Solids. 2010;356:141–6.

    Article  CAS  Google Scholar 

  23. Abou-El-Sherbini KS, Pape C, Rienetz O, Schiel D, Stosch R, Weidler PG, et al. Stabilization of n-aminopropyl silica gel against hydrolysis by blocking silanol groups with TiO2 or ZrO2. J Sol-Gel Sci Technol. 2010;53:587–97.

    Article  CAS  Google Scholar 

  24. You Y-Z, Kalebaila KK, Brock SL, Oupicky D. Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chem Mater. 2008;20:3354–9.

    Article  CAS  Google Scholar 

  25. Yang S, Coles DJ, Esposito A, Mitchell DJ, Toth I, Minchin RF. Cellular uptake of self-assembled cationic peptide-DNA complexes: multifunctional role of the enhancer chloroquine. J Control Rel. 2009;135:159–65.

    Article  CAS  Google Scholar 

  26. Gabrielson NP, Pack DW. Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. J Control Release. 2009;136:54–61.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng J, Zeidan R, Mishra S, Liu A, Pun SH, Kulkarni RP, et al. Structure-function correlation of chloroquine and analogues as transgene expression enhancers in nonviral gene delivery. J Med Chem. 2006;49:6522–31.

    Article  CAS  PubMed  Google Scholar 

  28. Oupicky D, Carlisle RC, Seymour LW. Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo. Gene Ther. 2001;8:713–24.

    Article  CAS  PubMed  Google Scholar 

  29. Luten J, van Nostrum CF, De Smedt SC, Hennink WE. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Rel. 2008;126:97–110.

    Article  CAS  Google Scholar 

  30. de Wolf HK, de Raad M, Snel C, van Steenbergen MJ, Fens MH, Storm G, et al. Biodegradable poly(2-dimethylamino ethylamino)phosphazene for in vivo gene delivery to tumor cells. Effect of polymer molecular weight. Pharm Res. 2007;24:1572–80.

    Article  CAS  PubMed  Google Scholar 

  31. Blacklock J, You YZ, Zhou QH, Mao G, Oupicky D. Gene delivery in vitro and in vivo from bioreducible multilayered polyelectrolyte films of plasmid DNA. Biomaterials. 2009;30:939–50.

    Article  CAS  PubMed  Google Scholar 

  32. Hunter AC. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv Drug Deliv Rev. 2006;58:1523–31.

    Article  CAS  PubMed  Google Scholar 

  33. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24:1121–31.

    Article  CAS  PubMed  Google Scholar 

  34. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release. 2000;65:133–48.

    Article  CAS  PubMed  Google Scholar 

  35. Fischer D, Bieber T, Li Y, Elsasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–9.

    Article  CAS  PubMed  Google Scholar 

  36. Slita AV, Kasyanenko NA, Nazarova OV, Gavrilova II, Eropkina EM, Sirotkin AK, et al. DNA-polycation complexes: effect of polycation structure on physico-chemical and biological properties. J Biotechnol. 2007;127:679–93.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by NIH Grant EB0043588 from the National Institute of Biomedical Imaging and Bioengineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Oupicky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

(DOC 1614 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattarai, S.R., Muthuswamy, E., Wani, A. et al. Enhanced Gene and siRNA Delivery by Polycation-Modified Mesoporous Silica Nanoparticles Loaded with Chloroquine. Pharm Res 27, 2556–2568 (2010). https://doi.org/10.1007/s11095-010-0245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0245-0

KEY WORDS

Navigation