Skip to main content

Advertisement

Log in

Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

In this study, the effect of MDR-1 gene silencing, using small interfering RNA (siRNA), and paclitaxel (PTX) co-therapy in overcoming tumor multidrug resistance was examined. Poly(ethylene oxide)-modified poly(beta-amino ester) (PEO-PbAE) and PEO-modified poly(epsilon-caprolactone) (PEO-PCL) nanoparticles were formulated to efficiently encapsulate MDR-1 silencing siRNA and PTX, respectively. Upon administration in multidrug resistant SKOV3TR human ovarian adenocarcinoma cells, siRNA-mediated MDR-1 gene silencing was evident at 100 nM dose. Combination of MDR-1 gene silencing and nanoparticle-mediated delivery significantly influenced the cytotoxic activity of PTX in SKOV3TR cells similar to what was observed in drug sensitive SKOV3 cells. We speculate that the enhancement in cytotoxicity was due to an increase in intracellular drug accumulation upon MDR-1 gene silencing leading to an apoptotic cell-kill effect. Taken together, these preliminary results are highly encouraging for the development of combination nano-therapeutic strategies that combine gene silencing and drug delivery to provide more potent therapeutic effect, especially in refractory tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bradley G, Juranka PF, Ling V (1988) Mechanism of multidrug resistance. Biochem Biophys Acta 948:87–128

    PubMed  CAS  Google Scholar 

  2. Desoize B, Jardillier JC (2000) Multicellular resistance: a paradigm for clinical resistance? Crit Rev Oncol Hemat 36:193–207

    Article  CAS  Google Scholar 

  3. Szakacs G et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  PubMed  CAS  Google Scholar 

  4. Yusuf RZ et al (2003) Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug Targets 3(1):1–19

    Article  PubMed  CAS  Google Scholar 

  5. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58

    Article  PubMed  CAS  Google Scholar 

  6. Harris AL, Hochhauser D (1992) Mechanisms of multidrug resistance in cancer treatment. Acta Oncol 31(2):205–213

    Article  PubMed  CAS  Google Scholar 

  7. Di Nicolantonio F et al (2005) Cancer cell adaptation to chemotherapy. BMC Cancer 5:78

    Article  PubMed  Google Scholar 

  8. Ganasia-Leymarie V et al (2003) Signal transduction pathways of taxanes-induced apoptosis. Curr Med Chem Anti-Cancer Agents 3(4):291–306

    Article  Google Scholar 

  9. Fire AZ (2007) Gene silencing by double-stranded RNA. Cell Death Differ 14(12):1998–2012

    Article  PubMed  CAS  Google Scholar 

  10. Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature 431(7006):338–342

    Article  PubMed  CAS  Google Scholar 

  11. Elbashir SM et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  PubMed  CAS  Google Scholar 

  12. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200

    Article  PubMed  CAS  Google Scholar 

  13. Faltus T et al (2004) Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-overexpressing breast cancer cells. Neoplasia 6(6):786–795

    Article  PubMed  CAS  Google Scholar 

  14. Oliveira S et al (2007) Photochemical internalization enhances silencing of epidermal growth factor receptor through improved endosomal escape of siRNA. Biochim Biophys Acta 1768(5):1211–1217

    Article  PubMed  CAS  Google Scholar 

  15. Schiffelers RM et al (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32(19):e149

    Article  PubMed  Google Scholar 

  16. Hua J, Mutch DG, Herzog TJ (2005) Stable suppression of MDR-1 gene using siRNA expression vector to reverse drug resistance in a human uterine sarcoma cell line. Gynecol Oncol 98(1):31–38

    Article  PubMed  CAS  Google Scholar 

  17. Logashenko EB et al (2004) Silencing of MDR 1 gene in cancer cells by siRNA. Nucleosides Nucleotides Nucleic Acids 23(6–7):861–866

    Article  PubMed  CAS  Google Scholar 

  18. Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59(2–3):75–86

    Article  PubMed  CAS  Google Scholar 

  19. Akhtar S, Benter IF (2007) Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 117(12):3623–3632

    Article  PubMed  CAS  Google Scholar 

  20. van Vlerken LE, Vyas TK, Amiji MM (2007) Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 24(8):1405–1414

    Article  PubMed  Google Scholar 

  21. Maeda H et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapuetics: a review. J Control Rel 65(1–2):271–284

    Article  CAS  Google Scholar 

  22. Monsky WL et al (1999) Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res 59(16):4129–4135

    PubMed  CAS  Google Scholar 

  23. Chawla JS, Amiji MM (2002) Biodegradable poly(epsilon-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm 249(1–2):127–138

    Article  PubMed  CAS  Google Scholar 

  24. Chawla JS, Amiji MM (2003) Cellular uptake and concentrations of tamoxifen upon administration in poly(epsilon-caprolactone) nanoparticles. AAPS Pharmsci 5(1):E3

    Article  PubMed  Google Scholar 

  25. Devalapally H et al (2007) Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int J Cancer 121:1830–1838

    Article  PubMed  CAS  Google Scholar 

  26. Shenoy DB, Amiji MM (2005) Poly(ethylene oxide)-modified poly(epsilon caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 293:261–270

    Article  PubMed  CAS  Google Scholar 

  27. van Vlerken LE et al (2007) Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res 67(10):4843–4850

    Article  PubMed  Google Scholar 

  28. Zugates GT et al (2007) Gene delivery properties of end-modified poly(beta-amino ester)s. Bioconjug Chem 18(6):1887–1896

    Article  PubMed  CAS  Google Scholar 

  29. Anderson DG et al (2005) Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Mol Ther 11(3):426–434

    Article  PubMed  CAS  Google Scholar 

  30. Devalapally H et al (2006) Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother Pharmacol [Epub]

  31. Shenoy D et al (2005) Poly(ethylene oxide)-modified poly(beta amino ester) nanoparticles as a pH sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm Res 22(12):2107–2114

    Article  PubMed  CAS  Google Scholar 

  32. Shenoy D et al (2005) Poly(ethylene oxide)-modified poly(beta amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. Part I. Invitro evaluations. Mol Pharmaceutics 2(5):357–366

    Article  CAS  Google Scholar 

  33. Wu H, Hait WN, Yang JM (2003) Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 63(7):1515–1519

    PubMed  CAS  Google Scholar 

  34. Dordunoo SK et al (1995) Taxol encapsulation in poly(epsilon-caprolactone) microspheres. Cancer Chemother Pharmacol 36(4):279–282

    PubMed  CAS  Google Scholar 

  35. Duan Z et al (2005) Description of paclitaxel resistance-associated genes in ovarian and breast cancer cell lines. Cancer Chemo Pharm 55:277–285

    Article  CAS  Google Scholar 

  36. Duan Z, Brakora KA, Seiden MV (2004) Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther 3(7):833–838

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Nanotechnology Platform Partnership grant (R01-CA119617) from the National Cancer Institute (NCI) of the U.S. National Institutes of Health. We deeply appreciate the assistance of Professor Robert Campbell and his lab members with the particle size, surface charge, and optical microscopy studies. Scanning electron microscopy was performed by Mr. William Fowle at the Electron Microscopy Center, Northeastern University (Boston, MA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor M. Amiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, S., van Vlerken, L.E., Little, S.R. et al. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother Pharmacol 63, 711–722 (2009). https://doi.org/10.1007/s00280-008-0790-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0790-y

Keywords

Navigation