Skip to main content
Log in

PAMAM-Camptothecin Conjugate Inhibits Proliferation and Induces Nuclear Fragmentation in Colorectal Carcinoma Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To synthesize and characterize a poly (amido amine) dendrimer-camptothecin (PAMAM-CPT) conjugate and evaluate its activity on human colorectal carcinoma cells (HCT-116).

Methods

The attachment of CPT to amine-terminated PAMAM was facilitated through a succinic acid-glycine linker. The conjugate was characterized for absence of small molecular weight impurities, size and drug content. Stability of the conjugate in PBS and growth media and its in vitro activity on HCT-116 were studied. Cell cycle arrest and nuclear fragmentation upon PAMAM-CPT treatment were investigated.

Results

The conjugate was stable under physiological pH (7.4) in PBS and in growth media (with 10% FBS) with minimal release of 4% and 6% drug, respectively, at 48 h. PAMAM-CPT inhibited proliferation of HCT-116 cells with an IC50 value of 1.6 ± 0.3 µM. The conjugate induced signs of cell cycle arrest with up to 68% of cells blocked in the G2 phase. Confocal images of cells treated with PAMAM-CPT suggest nuclear fragmentation and formation of apoptotic bodies.

Conclusions

Results show that the PAMAM-CPT conjugate was active against colorectal cancer cells in vitro, inhibiting their growth and inducing nuclear fragmentation. Coupled with the ability to target macromolecular therapeutics to tumors, this conjugate shows promise for cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATCC:

American type culture collection

BOC:

tert-Butyloxycarbonyl

CCK:

cell counting kit

CPT:

camptothecin

DAPI:

4′, 6-diamidino-2-phenylindole

DCM:

dichloromethane

DI:

deionized

DIPC–N:

N’–diisopropyl carbodiimide

DIPEA–N:

N–diisopropyl ethylamine

DLS:

dynamic light scattering

DMAP:

4-dimethyl amino pyridine

DMSO:

dimethyl sulfoxide

DNA:

deoxyribonucleic acid

EDC (m):

1-[3-(dimethyl amino) propyl]-3 ethyl carbodiimide methiodide

EPR:

enhanced permeability and retention

FBS:

fetal bovine serum

FPLC:

fast protein liquid chromatography

G4.0:

Generation 4.0

HPLC:

high performance liquid chromatography

IC50 :

half maximal inhibitory concentration

MW:

molecular weight

MWCO:

molecular weight cutoff

NHS-s:

N-hydroxy sulfosuccinimide sodium salt

P-gp:

permeability glycoprotein

PAMAM:

Poly (amido amine)

PBS:

phosphate buffered saline

PEG:

Poly (ethylene glycol)

RNAse:

ribonuclease

SEC:

size exclusion chromatography

TFA:

trifluoroacetic acid

THF:

tetrahydrofuran

TLC:

thin layer chromatography

UV:

ultraviolet

WST:

water-soluble tetrazolium salt

Wt:

weight

REFERENCES

  1. Ulukan H, Swaan PW. Camptothecins: a review of their chemotherapeutic potential. Drugs. 2002;62:2039–57.

    Article  CAS  PubMed  Google Scholar 

  2. Li QY, Zu YG, Shi RZ, Yao LP. Review camptothecin: current perspectives. Curr Med Chem. 2006;13:2021–39.

    Article  CAS  PubMed  Google Scholar 

  3. Hatefi A, Amsden B. Camptothecin delivery methods. Pharm Res. 2002;19:1389–99.

    Article  CAS  PubMed  Google Scholar 

  4. Facts about cancer deaths. http://www.who.int/mediacentre/factsheets/fs297/en/, part of World Health Organization http://www.who.int/en/ (accessed 08/31 2009).

  5. Current treatment options for colon cancer. http://www.cancer.gov/cancertopics/pdq/treatment/colon/Patient/page4, part of National Cancer Institute http://www.cancer.gov/ (accessed 08/31 2009).

  6. Petrelli N. Surgical management of liver metastases from colorectal cancer. Clin Adv Hematol Oncol. 2006;4:673–5.

    PubMed  Google Scholar 

  7. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.

    Article  CAS  PubMed  Google Scholar 

  8. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS  PubMed  Google Scholar 

  9. Najlah M, Freeman S, Attwood D, D’Emanuele A. Synthesis and assessment of first-generation polyamidoamine dendrimer prodrugs to enhance the cellular permeability of P-gp substrates. Bioconjug Chem. 2007;18:937–46.

    Article  CAS  PubMed  Google Scholar 

  10. Patri AK, Majoros IJ, Baker JR. Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol. 2002;6:466–71.

    Article  CAS  PubMed  Google Scholar 

  11. Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans. 2007;35:61–7.

    Article  CAS  PubMed  Google Scholar 

  12. Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm. 2009;71:445–62.

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev. 2005;57:2271–86.

    Article  CAS  PubMed  Google Scholar 

  14. Malik N, Evagorou EG, Duncan R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs. 1999;10:767–76.

    Article  CAS  PubMed  Google Scholar 

  15. Milhem OM, Myles C, McKeown NB, Attwood D, D'Emanuele A. Polyamidoamine Starburst dendrimers as solubility enhancers. Int J Pharm. 2000;197:239–41.

    Article  CAS  PubMed  Google Scholar 

  16. Kurtoglu YE, Mishra MK, Kannan S, Kannan RM. Drug release characteristics of PAMAM dendrimer-drug conjugates with different linkers. Int J Pharm. 2010;384:189–94.

    Article  CAS  PubMed  Google Scholar 

  17. Najlah M, Freeman S, Attwood D, D'Emanuele A. In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int J Pharm. 2007;336:183–90.

    Article  CAS  PubMed  Google Scholar 

  18. El-Sayed M, Ginski M, Rhodes C, Ghandehari H. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J Control Release. 2002;81:355–65.

    Article  CAS  PubMed  Google Scholar 

  19. Jevprasesphant R, Penny J, Attwood D, McKeown NB, D'Emanuele A. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res. 2003;20:1543–50.

    Article  CAS  PubMed  Google Scholar 

  20. Kolhatkar RB, Swaan P, Ghandehari H. Potential oral delivery of 7-ethyl-10-hydroxy-camptothecin (SN-38) using poly(amidoamine) dendrimers. Pharm Res. 2008;25:1723–9.

    Article  CAS  PubMed  Google Scholar 

  21. Greenwald RB, Pendri A, Conover CD, Lee C, Choe YH, Gilbert C, et al. Camptothecin-20-PEG ester transport forms: the effect of spacer groups on antitumor activity. Bioorg Med Chem. 1998;6:551–62.

    Article  CAS  PubMed  Google Scholar 

  22. Darzynkiewicz Z, Juan G, Bedner E. Determining cell cycle stages by flow cytometry. In: Bonifacino JS, Dasso M, Harford JB, Lippincott-Schwartz J, Yamada KM, editors. Current protocols in cell biology. New York: Wiley; 1999. p. 8.4.1–8.4.18.

    Google Scholar 

  23. Holt SJ. Some observations on the occurrence and nature of esterases in lysosomes. In: De Reuckand AVS, Cameron MP, editors. Lysosomes. London: Churchill; 1963. p. 114–25.

    Chapter  Google Scholar 

  24. Liederer BM, Borchardt RT. Enzymes involved in the bioconversion of ester-based prodrugs. J Pharmaceut Sci. 2006;95:1177–95.

    Article  CAS  Google Scholar 

  25. Bencharit S, Morton CL, Howard-Williams EL, Danks MK, Potter PM, Redinbo MR. Structural insights into CPT-11 activation by mammalian carboxylesterases. Nat Struct Biol. 2002;9:337–42.

    Article  CAS  PubMed  Google Scholar 

  26. Khatri VP, Petrelli NJ, Belghiti J. Extending the frontiers of surgical therapy for hepatic colorectal metastases: is there a limit? J Clin Oncol. 2005;23:8490–9.

    Article  PubMed  Google Scholar 

  27. Kitchens KM, Kolhatkar RB, Swaan PW, Eddington ND, Ghandehari H. Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm Res. 2006;23:2818–26.

    Article  CAS  PubMed  Google Scholar 

  28. Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl. 2006;45:1198–215.

    Article  CAS  PubMed  Google Scholar 

  29. Singer JW, Bhatt R, Tulinsky J, Buhler KR, Heasley E, Klein P, et al. Water-soluble poly-(L-glutamic acid)-Gly-camptothecin conjugates enhance camptothecin stability and efficacy in vivo. J Control Release. 2001;74:243–7.

    Article  CAS  PubMed  Google Scholar 

  30. Pan H, Kopeckova P, Liu J, Wang D, Miller SC, Kopecek J. Stability in plasmas of various species of HPMA copolymer-PGE1 conjugates. Pharm Res. 2007;24:2270–80.

    Article  CAS  PubMed  Google Scholar 

  31. Najlah M, Freeman S, Attwood D, D'Emanuele A. Synthesis, characterization and stability of dendrimer prodrugs. Int J Pharm. 2006;308:175–82.

    Article  CAS  PubMed  Google Scholar 

  32. Xu H, Deng Y, Chen D, Hong W, Lu Y, Dong X. Esterase-catalyzed dePEGylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. J Control Release. 2008;130:238–45.

    Article  CAS  PubMed  Google Scholar 

  33. Tsao YP, D'Arpa P, Liu LF. The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res. 1992;52:1823–9.

    CAS  PubMed  Google Scholar 

  34. Kitchens KM, Foraker AB, Kolhatkar RB, Swaan PW, Ghandehari H. Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells. Pharm Res. 2007;24:2138–45.

    Article  CAS  PubMed  Google Scholar 

  35. Saovapakhiran A, D'Emanuele A, Attwood D, Penny J. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug Chem. 2009;20:693–701.

    Article  CAS  PubMed  Google Scholar 

  36. Seib FP, Jones AT, Duncan R. Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. J Control Release. 2007;117:291–300.

    Article  CAS  PubMed  Google Scholar 

  37. Green DR, Kroemer G. Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest. 2005;115:2610–7.

    Article  CAS  PubMed  Google Scholar 

  38. MacFarlane M. Cell death pathways–potential therapeutic targets. Xenobiotica. 2009;39:616–24.

    Article  CAS  PubMed  Google Scholar 

  39. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16:3–11.

    Article  CAS  PubMed  Google Scholar 

  40. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14:1237–43.

    Article  CAS  PubMed  Google Scholar 

  41. Shimizu T, Pommier Y. Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases. Leukemia. 1997;11:1238–44.

    Article  CAS  PubMed  Google Scholar 

  42. Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 2000;45:528–37.

    Article  CAS  PubMed  Google Scholar 

  43. Tomalia DA, Naylor AM, Goddard WA. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angewandte Chemie International Edition in English. 1990;29:138–75.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported by a National Institutes of Health grant (R01-EB007470) and the Utah Science Technology and Research (USTAR) Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Ghandehari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Mass spectrometry (ESI, m/z, M+1) images of intermediate compounds. A) glycine-camptothecin (m/z, M+1, 406.0); B) succinic acid-glycine-camptothecin (m/z, M+1, 506.1) (TIFF 890 kb)

High resolution

(GIF 138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiagarajan, G., Ray, A., Malugin, A. et al. PAMAM-Camptothecin Conjugate Inhibits Proliferation and Induces Nuclear Fragmentation in Colorectal Carcinoma Cells. Pharm Res 27, 2307–2316 (2010). https://doi.org/10.1007/s11095-010-0179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0179-6

KEY WORDS

Navigation