Skip to main content
Log in

Resveratrol and Resveratrol Analogues—Structure—Activity Relationship

  • Perspective
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Resveratrol (3,4′,5-trihydroxy-trans-stilbene) is a compound found in wine and is held responsible for a number of beneficial effects of red wine. Besides the prevention of heart disease and significant anti-inflammatory effects, resveratrol might inhibit tumor cell growth and even play a role in the aging process. We here describe the structure-activity relationship of resveratrol and analogues of resveratrol regarding the free radical scavenging and antitumor effects of this exciting natural compound. In addition, we have synthesized a number of analogues of resveratrol with the aim to further improve the beneficial effects of resveratrol. Our studies were based on the analysis of structural properties, which were responsible for the most important effects of this compound. Striking in vivo effects can be observed with hexahydroxystilbene (M8), the most effective synthetic analogue of resveratrol. We could show that M8 inhibits tumor as well as metastasis growth of human melanoma in two different animal models, alone and in combination with dacarbacine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Richard JL. Coronary risk factors. The French paradox. Arch Mal Coeur Vaiss. 1987;80:17–21.

    PubMed  Google Scholar 

  2. Roldán A, Palacios V, Caro I, Pérez L. Resveratrol content of Palomino fino grapes: influence of vintage and fungalinfection. J Agric Food Chem. 2003;51:1464–8.

    Article  PubMed  CAS  Google Scholar 

  3. Pace-Asciak CR, Hahn S, Diamandis EP, Soleas G, Goldberg DM. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin Chim Acta. 1995;235:207–19.

    Article  PubMed  CAS  Google Scholar 

  4. Frankel EN, Waterhouse AL, Kinsella JE. Inhibition of human LDL oxidation by resveratrol. Lancet. 1993;341:1103–4.

    Article  PubMed  CAS  Google Scholar 

  5. Bertelli AA, Giovannini L, Stradi R, Bertelli A, Tillement JP. Plasma, urine and tissue levels of trans- and cis-resveratrol (3, 4′, 5-trihydroxystilbene) after short-term or prolonged administration of red wine to rats. Int J Tissue React. 1996;18:67–71.

    PubMed  CAS  Google Scholar 

  6. Kimura Y, Okuda H, Arichi S. Effects of stilbenes on arachidonate metabolism in leukocytes. Biochim Biophys Acta. 1985;834:275–8.

    PubMed  CAS  Google Scholar 

  7. Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ijaz T, et al. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br J Cancer. 2002;86:774–8.

    Article  PubMed  CAS  Google Scholar 

  8. Maier-Salamon A, Hagenauer B, Wirth M, Gabor F, Szekeres T, Jäger W. Increased transport of resveratrol across monolayers of the human intestinal Caco-2 cells is mediated by inhibition and saturation of metabolites. Pharm Res. 2006;23:2107–15.

    Article  PubMed  CAS  Google Scholar 

  9. Murias M, Miksits M, Aust S, Spatzenegger M, Thalhammer T, Szekeres T, et al. Metabolism of resveratrol in breast cancer cell lines: impact of sulfotransferase 1A1 expression on cell growth inhibition. Cancer Lett. 2008;261:172–82.

    Article  PubMed  CAS  Google Scholar 

  10. Bertelli AA, Giovannini L, Giannessi D, Migliori M, Bernini W, Fregoni M, et al. Antiplatelet activity of synthetic and natural resveratrol in red wine. Int J Tissue React. 1995;17:1–3.

    PubMed  CAS  Google Scholar 

  11. Fauconneau B, Waffo-Teguo P, Huguet F, Barrier L, Decendit A, Merillon JM. Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sci. 1997;61:2103–10.

    Article  PubMed  CAS  Google Scholar 

  12. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW CW, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275:218–20.

    Article  PubMed  CAS  Google Scholar 

  13. Fontecave M, Lepoivre M, Elleingand E, Gerez C, Guittet O. Resveratrol, a remarkable inhibitor of ribonucleotide reductase. FEBS Lett. 1998;421:277–9.

    Article  PubMed  CAS  Google Scholar 

  14. Szekeres T, Gharehbaghi K, Fritzer M, Woody M, Srivastava A, van’t Riet B, et al. Biochemical and antitumor activity of trimidox, a new inhibitor of ribonucleotide reductase. Cancer Chemother Pharmacol. 1994;34:63–6.

    Article  PubMed  CAS  Google Scholar 

  15. Rodrigue CM, Arous N, Bachir D, Smith-Ravin J, Romeo PH, Galacteros F, et al. Resveratrol, a natural dietary phytoalexin, possesses similar properties to hydroxyurea towards erythroid differentiation. Br J Haematol. 2001;113:500–7.

    Article  PubMed  CAS  Google Scholar 

  16. Gehm BD, McAndrews JM, Chien PY, Jameson JL. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A. 1997;94:14138–43.

    Article  PubMed  CAS  Google Scholar 

  17. Ray PS, Maulik G, Cordis GA, Bertelli AA, Bertelli A, Das DK. The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radic Biol Med. 1999;27:160–9.

    Article  PubMed  CAS  Google Scholar 

  18. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6.

    Article  PubMed  CAS  Google Scholar 

  19. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–42.

    Article  PubMed  CAS  Google Scholar 

  20. Yang H, Baur JA, Chen A, Miller C, Adams JK, Kisielewski A, et al. Design and synthesis of compounds that extend yeast replicative lifespan. Aging Cell. 2007;6:35–43.

    Article  PubMed  CAS  Google Scholar 

  21. Goldberg DM, Yan J, Soleas GJ. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem. 2003;36:79–87.

    Article  PubMed  CAS  Google Scholar 

  22. Das S, Lin HS, Ho PC, Ng KY. The impact of aqueous solubility and dose on the pharmacokinetic profiles of resveratrol. Pharm Res. 2008;25:2593–600.

    Article  PubMed  CAS  Google Scholar 

  23. Narayanan NK, Nargi D, Randolph C, Narayanan BA. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer. 2009;125:1–8.

    Article  PubMed  CAS  Google Scholar 

  24. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–61.

    Article  PubMed  CAS  Google Scholar 

  25. Murias M, Handler N, Erker T, Pleban K, Ecker G, Saiko P, et al. Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure-activity relationship. Bioorg Med Chem. 2004;12:5571–8.

    Article  PubMed  CAS  Google Scholar 

  26. Murias M, Jäger W, Handler N, Erker T, Horvath Z, Szekeres T, et al. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem Pharmacol. 2005;69:903–12.

    Article  PubMed  CAS  Google Scholar 

  27. Thakkar K, Geahlen RL, Cushman M. Synthesis and protein-tyrosine kinase inhibitory activity of polyhydroxylated stilbene analogues of piceatannol. J Med Chem. 1993;36:2950–5.

    Article  PubMed  CAS  Google Scholar 

  28. Rüweler M, Gülden M, Maser E, Murias M, Seibert H. Cytotoxic, cytoprotective and antioxidant activities of resveratrol and analogues in C6 astroglioma cells in vitro. Chem Biol Interact. 2009;182:128–35.

    Article  PubMed  CAS  Google Scholar 

  29. Lee KW, Kang NJ, Rogozin EA, Oh SM, Heo YS, Pugliese A, et al. The resveratrol analogue 3, 5, 3′, 4′, 5′-pentahydroxy-trans-stilbene inhibits cell transformation via MEK. Int J Cancer. 2008;123:2487–96.

    Article  PubMed  CAS  Google Scholar 

  30. Horvath Z, Murias M, Saiko P, Erker T, Handler N, Madlener S, et al. Cytotoxic and biochemical effects of 3, 3′, 4, 4′, 5, 5′-hexahydroxystilbene, a novel resveratrol analogue in HL-60 human promyelocytic leukemia cells. Exp Hematol. 2006;34:1377–84.

    Article  PubMed  CAS  Google Scholar 

  31. Wachek V, Horvath Z, Strommer S, Fuereder T, Szekeres T. Resveratrol analogue M8 chemosensitizes malignant melanoma to dacarbacin in vivo. Clin Cancer Res. Part 2 Suppl S 2005;11:8971S.

    Google Scholar 

  32. Paulitschke V, Schicher N, Szekeres T, Jäger W, Elbling L, Riemer AB, et al. 3,3′,4,4′,5,5′-hexahydroxystilbene impairs melanoma progression in a metastatic mouse model. J Invest Dermatol. Dec 3. [Epubahead of print] 2009.

  33. Geahlen RL, McLaughlin JL. Piceatannol (3, 4, 3′, 5′-tetrahydroxy-trans-stilbene)is a naturally occurring protein-tyrosine kinase inhibitor. Biochem Biophys Res Commun. 1989;165:241–5.

    Article  PubMed  CAS  Google Scholar 

  34. Ashikawa K, Majumdar S, Banerjee S, Bharti AC, Shishodia S, Aggarwal BB. Piceatannol inhibits TNF-induced NF-kappaB activation and NF-kappaB-mediated gene expression through suppression of IkappaBalpha kinase and p65 phosphorylation. J Immunol. 2002;169:6490–7.

    PubMed  CAS  Google Scholar 

  35. Wieder T, Prokop A, Bagci B, Essmann F, Bernicke D, Schulze-Osthoff K, et al. Piceatannol, a hydroxylated analog of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia. 2001;15:1735–42.

    PubMed  CAS  Google Scholar 

  36. Fritzer-Szekeres M, Savinc I, Horvath Z, Saiko P, Pemberger M, Graser G, et al. Biochemical effects of piceatannol in human HL-60 promyelocytic leukemia cells—synergism with Ara-C. Int J Oncol. 2008;33:887–92.

    PubMed  CAS  Google Scholar 

  37. Miksits M, Sulyok M, Schuhmacher R, Szekeres T, Jäger W. In-vitro sulfation of piceatannol by human liver cytosol and recombinant sulfotransferases. J Pharm Pharmacol. 2009;61:185–91.

    Article  PubMed  CAS  Google Scholar 

  38. Vo TP, Madlener S, Bago-Horvath Z, Herbacek I, Stark N, Gridling M, et al. Pro- and anti-carcinogenic mechanisms of piceatannol are activated dose-dependently in MCF-7 breast cancer cells. Carcinogenesis. 2009 Aug 20. [Epub ahead of print].

  39. Horvath Z, Saiko P, Illmer C, Madlener S, Hoechtl T, Bauer W, et al. Synergistic action of resveratrol, an ingredient of wine, with Ara-C and tiazofurin in HL-60 human promyelocytic leukemia cells. Exp Hematol. 2005;33:329–35.

    Article  PubMed  CAS  Google Scholar 

  40. Madlener S, Illmer C, Horvath Z, Saiko P, Losert A, Herbacek I, et al. Gallic acidinhibits ribonucleotide reductase and cyclooxygenases in human HL-60promyelocytic leukemia cells. Cancer Lett. 2007;245:156–62.

    Article  PubMed  CAS  Google Scholar 

  41. Bernhaus A, Fritzer-Szekeres M, Grusch M, Saiko P, Krupitza G, Venkateswarlu S, et al. Digalloylresveratrol, a new phenolic acid derivative induces apoptosis and cell cycle arrest in human HT-29 colon cancer cells. Cancer Lett. 2009;274:299–304.

    Article  PubMed  CAS  Google Scholar 

  42. Cushman M, Nagarathnam D, Gopal D, Chakraborti AK, Lin CM, Hamel E. Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization. J Med Chem. 1991;34:2579–88.

    Article  PubMed  CAS  Google Scholar 

  43. Jeong SH, Jo WS, Song S, Suh H, Seol SY, Leem SH, et al. A novel resveratrol derivative, HS1793, overcomes the resistance conferred by Bcl-2 in human leukemic U937 cells. Biochem Pharmacol. 2009;77:1337–47.

    Article  PubMed  CAS  Google Scholar 

  44. Moran BW, Anderson FP, Devery A, Cloonan S, Butler WE, Varughese S, et al. Synthesis, structural characterisation and biological evaluation of fluorinated analogues of resveratrol. Bioorg Med Chem. 2009;17:4510–22.

    Article  PubMed  CAS  Google Scholar 

  45. Shang YJ, Qian YP, Liu XD, Dai F, Shang XL, Jia WQ, et al. Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution. J Org Chem. 2009;74:5025–31.

    Article  PubMed  CAS  Google Scholar 

  46. Weng CJ, Yang YT, Ho CT, Yen GC. Mechanisms of apoptotic effects induced by resveratrol, dibenzoylmethane, and their analogues on human lung carcinoma cells. J Agric Food Chem. 2009;57:5235–43.

    Article  PubMed  CAS  Google Scholar 

  47. Liu H, Dong A, Gao C, Tan C, Liu H, Zu X, et al. The design, synthesis, and anti-tumor mechanism study of N-phosphoryl amino acid modified resveratrol analogues. Bioorg Med Chem. 2008;16:10013–21.

    Article  PubMed  CAS  Google Scholar 

  48. Kang SS, Cuendet M, Endringer DC, Croy VL, Pezzuto JM, Lipton MA. Synthesis and biological evaluation of a library of resveratrol analogues as inhibitors of COX-1, COX-2 and NF-kappaB. Bioorg Med Chem. 2009;17(3):1044–54.

    Article  PubMed  CAS  Google Scholar 

  49. Heynekamp JJ, Weber WM, Hunsaker LA, Gonzales AM, Orlando RA, Deck LM, et al. Substituted trans-stilbenes, including analogues of the natural product resveratrol, inhibit the human tumor necrosis factor alpha-induced activation of transcription factor nuclear factor kappaB. J Med Chem. 2006;49(24):7182–9.

    Article  PubMed  CAS  Google Scholar 

  50. Simoni D, Roberti M, Invidiata FP, Aiello E, Aiello S, Marchetti P, et al. Stilbene-based anticancer agents: resveratrol analogues active toward HL60 leukemic cells with a non-specific phase mechanism. Bioorg Med Chem. 2006;16:3245–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Szekeres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szekeres, T., Fritzer-Szekeres, M., Saiko, P. et al. Resveratrol and Resveratrol Analogues—Structure—Activity Relationship. Pharm Res 27, 1042–1048 (2010). https://doi.org/10.1007/s11095-010-0090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0090-1

KEY WORDS

Navigation