Skip to main content

Advertisement

Log in

In Vivo Distribution of Polymeric Nanoparticles at the Whole-Body, Tumor, and Cellular Levels

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Block copolymer micelles (BCMs) were functionalized with indium-111 and/or epidermal growth factor (EGF), which enabled investigation of the in vivo transport of passively and actively targeted BCMs. The integration of conventional and image-based techniques afforded novel quantitative means to achieve an in-depth insight into the fate of polymeric nanoparticles in vivo.

Methods

Pharmacokinetics and biodistribution studies were performed in athymic mice bearing human breast xenografts to evaluate the whole-body transport of NT-BCMs (non-targeted, EGF-) and T-BCMs (targeted, EGF+). The intratumoral distribution of BCMs was investigated using MicroSPECT/CT and autoradiographic imaging, complemented with quantitative MATLAB® analyses. Tumors were fractionated for quantifying intracellular uptake of BCMs via γ-counting.

Results

The intratumoral distribution of NT-BCMs and T-BCMs were found to be heterogeneous, and positively correlated with tumor vascularization (r > 0.68 ± 0.04). The enhanced in vivo cell uptake and cell membrane binding of T-BCMs were found to delay their clearance from tumors overexpressing EGFR, and therefore resulted in enhanced tumor accumulation for the T-BCMs in comparison to the NT-BCMs.

Conclusions

Adequate passive targeting is required in order to achieve effective active targeting. Tumor physiology has a significant impact on the transvascular and intratumoral transport of passively and actively targeted BCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BCM:

Block copolymer micelle

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptors

h.p.i.:

Hours post-injection

IFP:

Interstitial fluid pressure

NDDS:

Nanoparticle-based drug delivery system

NT:

Non-targeted

PEG-b-PCL:

Poly(ethylene glycol)-block-poly(ε-caprolactone)

SPECT/CT:

Single photon emission computed tomography/Computed tomography

T:

Targeted

TAM:

Tumor-associated macrophages

111In:

Indium-111

References

  1. Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 2009;100:572–9.

    Article  CAS  PubMed  Google Scholar 

  2. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60.

    Article  CAS  PubMed  Google Scholar 

  3. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71:409–19.

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Lee H, Allen C. Formulation of drugs in block copolymer micelles: drug loading and release. Curr Pharm Des. 2006;12:4685–701.

    Article  CAS  PubMed  Google Scholar 

  5. Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev. 2009;61:768–84.

    Article  CAS  PubMed  Google Scholar 

  6. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.

    CAS  PubMed  Google Scholar 

  7. Li L, Wartchow CA, Danthi SN, Shen Z, Dechene N, Pease J, et al. A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys. 2004;58:1215–27.

    CAS  PubMed  Google Scholar 

  8. Gosk S, Moos T, Gottstein C, Bendas G. VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim Biophys Acta. 2008;1778:854–63.

    Article  CAS  PubMed  Google Scholar 

  9. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66:6732–40.

    Article  CAS  PubMed  Google Scholar 

  10. Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z, Hong K, et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res. 2005;65:11631–8.

    Article  CAS  PubMed  Google Scholar 

  11. Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release. 2004;96:273–83.

    Article  CAS  PubMed  Google Scholar 

  12. Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24:1029–46.

    Article  CAS  PubMed  Google Scholar 

  13. Marcucci F, Lefoulon F. Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discov Today. 2004;9:219–28.

    Article  CAS  PubMed  Google Scholar 

  14. Bae Y, Nishiyama N, Kataoka K. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug Chem. 2007;18:1131–9.

    Article  CAS  PubMed  Google Scholar 

  15. Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res. 2003;9:6551–9.

    CAS  PubMed  Google Scholar 

  16. Nobs L, Buchegger F, Gurny R, Allemann E. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem. 2006;17:139–45.

    Article  CAS  PubMed  Google Scholar 

  17. Lee H, Hu M, Reilly RM, Allen C. Apoptotic epidermal growth factor (EGF)-conjugated block copolymer micelles as a nanotechnology platform for targeted combination therapy. Mol Pharm. 2007;4:769–81.

    Article  CAS  PubMed  Google Scholar 

  18. Kullberg M, Mann K, Owens JL. Improved drug delivery to cancer cells: a method using magnetoliposomes that target epidermal growth factor receptors. Med Hypotheses. 2005;64:468–70.

    Article  CAS  PubMed  Google Scholar 

  19. Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release. 2003;91:103–13.

    Article  CAS  PubMed  Google Scholar 

  20. Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release. 2001;70:63–70.

    Article  CAS  PubMed  Google Scholar 

  21. Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials. 2005;26:1053–61.

    Article  CAS  PubMed  Google Scholar 

  22. Rampaul RS, Pinder SE, Nicholson RI, Gullick WJ, Robertson JF, Ellis IO. Clinical value of epidermal growth factor receptor expression in primary breast cancer. Adv Anat Pathol. 2005;12:271–3.

    Article  CAS  PubMed  Google Scholar 

  23. Mendelsohn J. The epidermal growth factor receptor as a target for cancer therapy. Endocr Relat Cancer. 2001;8:3–9.

    Article  CAS  PubMed  Google Scholar 

  24. Zeng F, Lee H, Allen C. Epidermal growth factor-conjugated poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics. Bioconjug Chem. 2006;17:399–409.

    Article  CAS  PubMed  Google Scholar 

  25. Hoang B, Lee H, Reilly RM, Allen C. Non-invasive monitoring of the fate of 111In-labeled block copolymer micelles by high resolution and high sensitivity MicroSPECT/CT imaging. Mol Pharm. 2009;6:581–92.

    Article  CAS  PubMed  Google Scholar 

  26. Zeng F, Allen C. Synthesis of carboxy-functionalized heterobifunctional poly(ethylene glycol) by a thiol-anionic polymerization method. Macromolecules. 2006;39:6391–8.

    Article  CAS  Google Scholar 

  27. Hu M, Chen P, Wang J, Chan C, Scollard DA, Reilly RM. Site-specific conjugation of HIV-1 tat peptides to IgG: a potential route to construct radioimmunoconjugates for targeting intracellular and nuclear epitopes in cancer. Eur J Nucl Med Mol Imaging. 2006;33:301–10.

    Article  CAS  PubMed  Google Scholar 

  28. Costantini DL, Chan C, Cai Z, Vallis KA, Reilly RM. (111)In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J Nucl Med. 2007;48:1357–68.

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Zeng F, Allen C. In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. Eur J Pharm Biopharm. 2007;65:309–19.

    Article  CAS  PubMed  Google Scholar 

  30. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64:7022–9.

    Article  CAS  PubMed  Google Scholar 

  31. Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst. 2006;98:335–44.

    Article  CAS  PubMed  Google Scholar 

  32. Murphy KP, Xie D, Thompson KS, Amzel LM, Freire E. Entropy in biological binding processes: estimation of translational entropy loss. Proteins. 1994;18:63–7.

    Article  CAS  PubMed  Google Scholar 

  33. Rowinsky EK. The erbB family: targets for therapeutic development against cancer and therapeutic strategies using monoclonal antibodies and tyrosine kinase inhibitors. Annu Rev Med. 2004;55:433–57.

    Article  CAS  PubMed  Google Scholar 

  34. Carlin CR, Simon D, Mattison J, Knowles BB. Expression and biosynthetic variation of the epidermal growth factor receptor in human hepatocellular carcinoma-derived cell lines. Mol Cell Biol. 1988;8:25–34.

    CAS  PubMed  Google Scholar 

  35. Fonge H, Lee H, Reilly RM, Allen C. Multifunctional block copolymer micelles for the delivery of 111In to EGFR-positive breast cancer cells for targeted auger electron radiotherapy. Mol Pharm. 2009. In Press.

  36. Mikhail AS, Allen C. Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release. 2009;138:214–23.

    Article  CAS  PubMed  Google Scholar 

  37. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55:3752–6.

    CAS  PubMed  Google Scholar 

  38. McLarty K, Cornelissen B, Scollard DA, Done SJ, Chun K, Reilly RM. Associations between the uptake of 111In-DTPA-trastuzumab, HER2 density and response to trastuzumab (Herceptin) in athymic mice bearing subcutaneous human tumour xenografts. Eur J Nucl Med Mol Imaging. 2009;36:81–93.

    Article  CAS  PubMed  Google Scholar 

  39. Kuszyk BS, Corl FM, Franano FN, Bluemke DA, Hofmann LV, Fortman BJ, et al. Tumor transport physiology: implications for imaging and imaging-guided therapy. Am J Roentgenol. 2001;177:747–53.

    CAS  Google Scholar 

  40. Stohrer M, Boucher Y, Stangassinger M, Jain RK. Oncotic pressure in solid tumors is elevated. Cancer Res. 2000;60:4251–5.

    CAS  PubMed  Google Scholar 

  41. Gao Y, Chen L, Gu W, Xi Y, Lin L, Li Y. Targeted nanoassembly loaded with docetaxel improves intracellular drug delivery and efficacy in murine breast cancer model. Mol Pharm. 2008;5:1044–54.

    Article  CAS  PubMed  Google Scholar 

  42. Park JS, Han TH, Lee KY, Han SS, Hwang JJ, Moon DH, et al. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Release. 2006;115:37–45.

    Article  CAS  PubMed  Google Scholar 

  43. Panyam J, Labhasetwar V. Dynamics of endocytosis and exocytosis of poly(D, L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res. 2003;20:212–20.

    Article  CAS  PubMed  Google Scholar 

  44. Fevrier B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004;16:415–21.

    Article  CAS  PubMed  Google Scholar 

  45. Maysinger D, Lovric J, Eisenberg A, Savic R. Fate of micelles and quantum dots in cells. Eur J Pharm Biopharm. 2007;65:270–81.

    Article  CAS  PubMed  Google Scholar 

  46. Barua S, Rege K. Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots. Small (Weinheim an der Bergstrasse, Germany). 2009;5:370–6.

    CAS  Google Scholar 

  47. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, et al. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ. 2008;15:80–8.

    Article  CAS  PubMed  Google Scholar 

  48. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19:183–232.

    Article  CAS  PubMed  Google Scholar 

  49. Heber D. Nutritional oncology. Amsterdam: Elsevier-Academic Press; 2006.

    Google Scholar 

  50. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9:285–93.

    Article  CAS  PubMed  Google Scholar 

  51. Liu SQ, Tong YW, Yang YY. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide)-b-poly(D, L-lactide-c o-glycolide) with varying compositions. Biomaterials. 2005;26:5064–74.

    Article  CAS  PubMed  Google Scholar 

  52. Rapoport N, Pitt WG, Sun H, Nelson JL. Drug delivery in polymeric micelles: from in vitro to in vivo. J Control Release. 2003;91:85–95.

    Article  CAS  PubMed  Google Scholar 

  53. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6:583–92.

    Article  CAS  PubMed  Google Scholar 

  54. Eikenes L, Tari M, Tufto I, Bruland OS, de Lange Davies C. Hyaluronidase induces a transcapillary pressure gradient and improves the distribution and uptake of liposomal doxorubicin (Caelyx) in human osteosarcoma xenografts. Br J Cancer. 2005;93:81–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by funding from Canadian Institutes of Health Research, Canadian Breast Cancer Research Alliance, and Ontario Institute for Cancer Research, awarded to C. Allen and R.M. Reilly. The authors are grateful to the Natural Sciences and Engineering Research Council of Canada, Hoffman-La Roche/Rosemarie Hager, and Lorne F. Lambier for scholarships awarded to H. Lee, as well as the MDS-Nordion Graduate Scholarship in Radiopharmaceutical Sciences awarded to B. Hoang. The authors would like to thank Deborah Scollard for technical assistance with the animal studies, as well as Anton Semechko from David A. Jaffray’s Laboratory and STTARR core IV for technical support on the MATLAB® algorithm for the autoradiography studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Hoang, B., Fonge, H. et al. In Vivo Distribution of Polymeric Nanoparticles at the Whole-Body, Tumor, and Cellular Levels. Pharm Res 27, 2343–2355 (2010). https://doi.org/10.1007/s11095-010-0068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0068-z

KEY WORDS

Navigation