Skip to main content

Advertisement

Log in

Anti-Cancer, Anti-Diabetic and Other Pharmacologic and Biological Activities of Penta-Galloyl-Glucose

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose (PGG) is a polyphenolic compound highly enriched in a number of medicinal herbals. Several in vitro and a handful of in vivo studies have shown that PGG exhibits multiple biological activities which implicate a great potential for PGG in the therapy and prevention of several major diseases including cancer and diabetes. Chemically and functionally, PGG appears to be distinct from its constituent gallic acid or tea polyphenols. For anti-cancer activity, three published in vivo preclinical cancer model studies with PGG support promising efficacy to selectively inhibit malignancy without host toxicity. Potential mechanisms include anti-angiogenesis; anti-proliferative actions through inhibition of DNA replicative synthesis, S-phase arrest, and G1 arrest; induction of apoptosis; anti-inflammation; and anti-oxidation. Putative molecular targets include p53, Stat3, Cox-2, VEGFR1, AP-1, SP-1, Nrf-2, and MMP-9. For anti-diabetic activity, PGG and analogues appear to improve glucose uptake. However, very little is known about the absorption, pharmacokinetics, and metabolism of PGG, or its toxicity profile. The lack of a large quantity of highly pure PGG has been a bottleneck limiting in vivo validation of cancer preventive and therapeutic efficacies in clinically relevant models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Oh GS, Pae HO, Oh H, et al. In vitro anti-proliferative effect of 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose on human hepatocellular carcinoma cell line, SK-HEP-1 cells. Cancer Lett. 2001;174(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  2. Huh JE, Lee EO, Kim MS, et al. Penta-O-galloyl-beta-D-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis. 2005;26(8):1436–1445.

    Article  PubMed  CAS  Google Scholar 

  3. Ren YM, Chen XZ. Distribution, bioactivities and therapeutical potentials of pentagalloylglucopyranose. Current Bioactive Compounds. 2007;3:81–89.

    Article  CAS  Google Scholar 

  4. Swain T, Bate-Smith EC. Flavonoid compounds. In: Florkin M, Mason HS, editors. Comparative biochemistry. New York: Academic; 1962. p. 755–809.

    Google Scholar 

  5. Yoshida T, Hatano T, Ito H. High molecular weight plant polyphenols (tannins): Prospective functions. Recent Advances in Phytochemistry; 2005. p. 163–190.

  6. Nishizawa M, Yamagishi T, Nonaka G, Nishioka I, Bando H. Novel hydrolyzable tannins from Nuphar-Japonicum Dc. Chem Pharm Bull. 1982;30(3):1094–1097.

    CAS  Google Scholar 

  7. Niemetz R, Gross GG. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry. 2005;66(17):2001–2011.

    Article  PubMed  CAS  Google Scholar 

  8. Cammann J, Denzel K, Schilling G, Gross GG. Biosynthesis of gallotannins: beta-glucogallin-dependent formation of 1, 2, 3, 4, 6-pentagalloylglucose by enzymatic galloylation of 1, 2, 3, 6-tetragalloylglucose. Arch Biochem Biophys. 1989;273(1):58–63.

    Article  PubMed  CAS  Google Scholar 

  9. Grundhofer P, Niemetz R, Schilling G, Gross GG. Biosynthesis and subcellular distribution of hydrolyzable tannins. Phytochemistry. 2001;57(6):915–927.

    Article  PubMed  CAS  Google Scholar 

  10. Niemetz R, Gross GG. Gallotannin biosynthesis: purification of beta-glucogallin: 1, 2, 3, 4, 6-pentagalloyl-beta-D-glucose galloyltransferase from sumac leaves. Phytochemistry. 1998;49(2):327–332.

    Article  CAS  Google Scholar 

  11. Hofmann AS, Gross GG. Biosynthesis of gallotannins: formation of polygalloylglucoses by enzymatic acylation of 1, 2, 3, 4, 6-penta-O-galloylglucose. Arch Biochem Biophys. 1990;283(2):530–532.

    Article  PubMed  CAS  Google Scholar 

  12. Frohlich B, Niemetz R, Gross GG. Gallotannin biosynthesis: two new galloyltransferases from Rhus typhina leaves preferentially acylating hexa- and heptagalloylglucoses. Planta. 2002;216(1):168–172.

    Article  PubMed  CAS  Google Scholar 

  13. Niemetz R, Gross GG. Oxidation of pentagalloylglucose to the ellagitannin, tellimagrandin II, by a phenol oxidase from Tellima grandiflora leaves. Phytochemistry. 2003;62(3):301–306.

    Article  PubMed  CAS  Google Scholar 

  14. Niemetz R, Schilling G, Gross GG. Biosynthesis of the dimeric ellagitannin, cornusiin E, in Tellima grandiflora. Phytochemistry. 2003;64(1):109–114.

    Article  PubMed  CAS  Google Scholar 

  15. Lee SJ, Lee HK, Jung MK, Mar W. In vitro antiviral activity of 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose against hepatitis B virus. Biol Pharm Bull. 2006;29(10):2131–2134.

    Article  PubMed  CAS  Google Scholar 

  16. Cavalher-Machado SC, Rosas EC, Brito Fde A, et al. The anti-allergic activity of the acetate fraction of Schinus terebinthifolius leaves in IgE induced mice paw edema and pleurisy. Int Immunopharmacol. 2008;8(11):1552–1560.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang F, Luo SY, Ye YB, et al. The antibacterial efficacy of an aceraceous plant [Shantung maple (Acer truncatum Bunge)] may be related to inhibition of bacterial beta-oxoacyl-acyl carrier protein reductase (FabG). Biotechnol Appl Biochem. 2008;51(Pt 2):73–78.

    Article  PubMed  CAS  Google Scholar 

  18. Ahn MJ, Kim CY, Lee JS, et al. Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Med. 2002;68(5):457–459.

    Article  PubMed  CAS  Google Scholar 

  19. Wang WC, Wang C, Song XY, Zhao WH, Wang Q. Determination of 1, 2, 3, 4, 6-penta-O-galloyl-D-glucose in forty four kinds of Chinese traditional medicines by HPLC. Zhongguo Zhong Yao Za Zhi. 2008;33(6):656–659.

    PubMed  CAS  Google Scholar 

  20. Hagerman AE, Robbins CT, Weerasuriya Y, Wilson TC, McArthur C. Tannin chemistry in relation to digestion. J Range Manag. 1992;45:57–62.

    Article  Google Scholar 

  21. Chen Y, Hagerman AE. Characterization of soluble non-covalent complexes between bovine serum albumin and beta-1, 2, 3, 4, 6-penta-O-galloyl-D-glucopyranose by MALDI-TOF MS. J Agric Food Chem. 2004;52(12):4008–4011.

    Article  PubMed  CAS  Google Scholar 

  22. Khanbabaee K, Lotzerich K. Efficient total synthesis of the natural products 2, 3, 4, 6-tetra-O-galloyl-d-glucopyranose, 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucopyranose and the unnatural 1, 2, 3, 4, 6-penta-O-galloyl-alpha-D-glucopyranose. Tetrahedron. 1997;53(31):10725–10732.

    Article  CAS  Google Scholar 

  23. Binkley RC, Ziepfel JC, Himmeldirk KB. Anomeric selectivity in the synthesis of galloyl esters of D-glucose. Carbohydr Res. 2009;344(2):237–239.

    Article  PubMed  CAS  Google Scholar 

  24. Chen YM, Hagerman AE, Minto RE. Preparation of 1, 2, 3, 4, 6-penta-O-galloyl-[U-C-14]-D-glucopyranose. J Label Compd Radiopharm. 2003;46(1):99–105.

    Article  CAS  Google Scholar 

  25. Skopec MM, Hagerman AE, Karasov WH. Do salivary proline-rich proteins counteract dietary hydrolyzable tannin in laboratory rats? J Chem Ecol. 2004;30(9):1679–1692.

    Article  PubMed  CAS  Google Scholar 

  26. Cai K, Hagerman AE, Minto RE, Bennick A. Decreased polyphenol transport across cultured intestinal cells by a salivary proline-rich protein. Biochem Pharmacol. 2006;71(11):1570–1580.

    Article  PubMed  CAS  Google Scholar 

  27. Hagerman AE, Rice ME, Ritchard NT. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin(16) (4 -> 8) catechin (procyanidin). J Agric Food Chem. 1998;46(7):2590–2595.

    Article  CAS  Google Scholar 

  28. Hu H, Lee HJ, Jiang C, et al. Penta-1, 2, 3, 4, 6-O-galloyl-beta-D-glucose induces p53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo. Mol Cancer Ther. 2008;7(9):2681–2691.

    Article  PubMed  CAS  Google Scholar 

  29. Nakagawa H, Hasumi K, Woo JT, Nagai K, Wachi M. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate. Carcinogenesis. 2004;25(9):1567–1574.

    Article  PubMed  CAS  Google Scholar 

  30. Lee KW, Hur HJ, Lee HJ, Lee CY. Antiproliferative effects of dietary phenolic substances and hydrogen peroxide. J Agric Food Chem. 2005;53(6):1990–1995.

    Article  PubMed  CAS  Google Scholar 

  31. Kuo PT, Lin TP, Liu LC, et al. Penta-O-galloyl-beta-D-glucose suppresses prostate cancer bone metastasis by transcriptionally repressing EGF-induced MMP-9 expression. J Agric Food Chem. 2009;57(8):3331–3339.

    Article  PubMed  CAS  Google Scholar 

  32. Miyamoto K, Kishi N, Koshiura R, Yoshida T, Hatano T, Okuda T. Relationship between the structures and the antitumor activities of tannins. Chem Pharm Bull. 1987;35(2):814–822.

    PubMed  CAS  Google Scholar 

  33. Lee HH, Ho CT, Lin JK. Theaflavin-3, 3′-digallate and penta-O-galloyl-beta-D-glucose inhibit rat liver microsomal 5alpha-reductase activity and the expression of androgen receptor in LNCaP prostate cancer cells. Carcinogenesis. 2004;25(7):1109–1118.

    Article  PubMed  CAS  Google Scholar 

  34. Hu H, Zhang J, Lee HJ, Kim SH, Lu J. Penta-O-galloyl-beta-D-glucose induces S- and G(1)-cell cycle arrests in prostate cancer cells targeting DNA replication and cyclin D1. Carcinogenesis. 2009;30(5):818–823.

    Article  PubMed  CAS  Google Scholar 

  35. Chen WJ, Chang CY, Lin JK. Induction of G1 phase arrest in MCF human breast cancer cells by pentagalloylglucose through the down-regulation of CDK4 and CDK2 activities and up-regulation of the CDK inhibitors p27(Kip) and p21(Cip). Biochem Pharmacol. 2003;65(11):1777–1785.

    PubMed  CAS  Google Scholar 

  36. Hua KT, Way TD, Lin JK. Pentagalloylglucose inhibits estrogen receptor alpha by lysosome-dependent depletion and modulates ErbB/PI3K/Akt pathway in human breast cancer MCF-7 cells. Mol Carcinog. 2006;45(8):551–560.

    Article  PubMed  CAS  Google Scholar 

  37. Pan MH, Lin JH, Lin-Shiau SY, Lin JK. Induction of apoptosis by penta-O-galloyl-beta-D-glucose through activation of caspase-3 in human leukemia HL-60 cells. Eur J Pharmacol. 1999;381(2–3):171–183.

    Article  PubMed  CAS  Google Scholar 

  38. Chen WJ, Lin JK. Induction of G1 arrest and apoptosis in human jurkat T cells by pentagalloylglucose through inhibiting proteasome activity and elevating p27Kip1, p21Cip1/WAF1, and Bax proteins. J Biol Chem. 2004;279(14):13496–13505.

    Article  PubMed  CAS  Google Scholar 

  39. Ho LL, Chen WJ, Lin-Shiau SY, Lin JK. Penta-O-galloyl-beta-D-glucose inhibits the invasion of mouse melanoma by suppressing metalloproteinase-9 through down-regulation of activator protein-1. Eur J Pharmacol. 2002;453(2–3):149–158.

    Article  PubMed  CAS  Google Scholar 

  40. Lee SJ, Lee HM, Ji ST, Lee SR, Mar W, Gho YS. 1, 2, 3, 4, 6-Penta-O-galloyl-beta-D-glucose blocks endothelial cell growth and tube formation through inhibition of VEGF binding to VEGF receptor. Cancer Lett. 2004;208(1):89–94.

    Article  PubMed  CAS  Google Scholar 

  41. Kitagawa S, Nabekura T, Nakamura Y, Takahashi T, Kashiwada Y. Inhibition of P-glycoprotein function by tannic acid and pentagalloylglucose. J Pharm Pharmacol. 2007;59(7):965–969.

    Article  PubMed  CAS  Google Scholar 

  42. Liu X, Kim JK, Li Y, Li J, Liu F, Chen X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3 T3–L1 cells. J Nutr. 2005;135(2):165–171.

    PubMed  CAS  Google Scholar 

  43. Li Y, Kim J, Li J, et al. Natural anti-diabetic compound 1, 2, 3, 4, 6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway. Biochem Biophys Res Commun. 2005;336(2):430–437.

    Article  PubMed  CAS  Google Scholar 

  44. Riedl KM, Hagerman AE. Tannin-protein complexes as radical scavengers and radical sinks. J Agric Food Chem. 2001;49(10):4917–4923.

    Article  PubMed  CAS  Google Scholar 

  45. Abdelwahed A, Bouhlel I, Skandrani I, et al. Study of antimutagenic and antioxidant activities of gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Confirmation by microarray expression profiling. Chem Biol Interact. 2007;165(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  46. Okubo T, Nagai F, Seto T, Satoh K, Ushiyama K, Kano I. The inhibition of phenylhydroquinone-induced oxidative DNA cleavage by constituents of Moutan Cortex and Paeoniae Radix. Biol Pharm Bull. 2000;23(2):199–203.

    PubMed  CAS  Google Scholar 

  47. Park EJ, Zhao YZ, An RB, Kim YC, Sohn DH. 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose from Galla Rhois protects primary rat hepatocytes from necrosis and apoptosis. Planta Med. 2008;74(11):1380–1383.

    Article  PubMed  CAS  Google Scholar 

  48. Okuda T, Mori K, Hayatsu H. Inhibitory effect of tannins on direct-acting mutagens. Chem Pharm Bull. 1984;32(9):3755–3758.

    PubMed  CAS  Google Scholar 

  49. Dinkova-Kostova AT, Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res. 2008;52(Suppl 1):S128–S138.

    PubMed  Google Scholar 

  50. Choi BM, Kim HJ, Oh GS, et al. 1, 2, 3, 4, 6-Penta-O-galloyl-beta-D-glucose protects rat neuronal cells (Neuro 2A) from hydrogen peroxide-mediated cell death via the induction of heme oxygenase-1. Neurosci Lett. 2002;328(2):185–189.

    Article  PubMed  CAS  Google Scholar 

  51. Pae HO, Oh GS, Jeong SO, et al. 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose up-regulates heme oxygenase-1 expression by stimulating Nrf2 nuclear translocation in an extracellular signal-regulated kinase-dependent manner in HepG2 cells. World J Gastroenterol. 2006;12(2):214–221.

    PubMed  CAS  Google Scholar 

  52. Bhimani RS, Troll W, Grunberger D, Frenkel K. Inhibition of oxidative stress in Hela-cells by chemopreventive agents. Cancer Research. 1993;53(19):4528–4533.

    PubMed  CAS  Google Scholar 

  53. Feldman KS, Sahasrabudhe K, Smith RS, Scheuchenzuber WJ. Immunostimulation by plant polyphenols: a relationship between tumor necrosis factor-alpha production and tannin structure. Bioorg Med Chem Lett. 1999;9(7):985–990.

    Article  PubMed  CAS  Google Scholar 

  54. Feldman KS, Sahasrabudhe K, Lawlor MD, Wilson SL, Lang CH, Scheuchenzuber WJ. In vitro and In vivo inhibition of LPS-stimulated tumor necrosis factor-alpha secretion by the gallotannin beta-D-pentagalloylglucose. Bioorg Med Chem Lett. 2001;11(14):1813–1815.

    Article  PubMed  CAS  Google Scholar 

  55. Wu M, Gu Z. Screening of bioactive compounds from moutan cortex and their anti-inflammatory activities in rat synoviocytes. Evid Based Complement Alternat Med. 2009;6(1):57–63.

    Article  PubMed  Google Scholar 

  56. Genfa L, Jiang Z, Hong Z, et al. The screening and isolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology. Int Immunopharmacol. 2005;5(6):1007–1017.

    Article  PubMed  CAS  Google Scholar 

  57. Oh GS, Pae HO, Choi BM, et al. Penta-O-galloyl-beta-D-glucose inhibits phorbol myristate acetate-induced interleukin-8 [correction of intereukin-8] gene expression in human monocytic U937 cells through its inactivation of nuclear factor-kappaB. Int Immunopharmacol. 2004;4(3):377–386.

    Article  PubMed  CAS  Google Scholar 

  58. Lee SH, Park HH, Kim JE, et al. Allose gallates suppress expression of pro-inflammatory cytokines through attenuation of NF-kappaB in human mast cells. Planta Med. 2007;73(8):769–773.

    Article  PubMed  CAS  Google Scholar 

  59. Lee SJ, Lee IS, Mar W. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose in murine macrophage cells. Arch Pharm Res. 2003;26(10):832–839.

    Article  PubMed  CAS  Google Scholar 

  60. Kang DG, Moon MK, Choi DH, Lee JK, Kwon TO, Lee HS. Vasodilatory and anti-inflammatory effects of the 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose (PGG) via a nitric oxide-cGMP pathway. Eur J Pharmacol. 2005;524(1–3):111–119.

    Article  PubMed  CAS  Google Scholar 

  61. Pan MH, Lin-Shiau SY, Ho CT, Lin JH, Lin JK. Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3, 3'-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages. Biochem Pharmacol. 2000;59(4):357–367.

    Article  PubMed  CAS  Google Scholar 

  62. Yokozawa T, Chen CP, Tanaka T, Kitani K. A study on the nitric oxide production-suppressing activity of Sanguisorbae Radix components. Biol Pharm Bull. 2000;23(6):717–722.

    PubMed  CAS  Google Scholar 

  63. Park JK, Cho HJ, Lim Y, Cho YH, Lee CH. Hypocholestrolemic effect of CJ90002 in hamsters: a potent inhibitor for squalene synthase from Paeonia moutan. J Microbiol Biotechnol. 2002;12(2):222–227.

    CAS  Google Scholar 

  64. Ono K, Sawada T, Murata Y, et al. Pentagalloylglucose, an antisecretory component of Paeoniae radix, inhibits gastric H+, K(+)-ATPase. Clin Chim Acta. 2000;290(2):159–167.

    Article  PubMed  CAS  Google Scholar 

  65. Isenburg JC, Simionescu DT, Starcher BC, Vyavahare NR. Elastin stabilization for treatment of abdominal aortic aneurysms. Circulation. 2007;115(13):1729–1737.

    Article  PubMed  CAS  Google Scholar 

  66. Tedder ME, Liao J, Weed B, et al. Stabilized Collagen Scaffolds for heart valve tissue engineering. Tissue Eng Part A. 2008.

  67. Goto H, Shimada Y, Akechi Y, Kohta K, Hattori M, Terasawa K. Endothelium-dependent vasodilator effect of extract prepared from the roots of Paeonia lactiflora on isolated rat aorta. Planta Med. 1996;62(5):436–439.

    Article  PubMed  CAS  Google Scholar 

  68. Dong H, Chen SX, Kini RM, Xu HX. Effects of tannins from Geum japonicum on the catalytic activity of thrombin and factor Xa of blood coagulation cascade. J Nat Products. 1998;61(11):1356–1360.

    Article  CAS  Google Scholar 

  69. Liu JC, Hsu FL, Tsai JC, et al. Antihypertensive effects of tannins isolated from traditional Chinese herbs as non-specific inhibitors of angiontensin converting enzyme. Life Sci. 2003;73(12):1543–1555.

    Article  PubMed  CAS  Google Scholar 

  70. Sugaya A, Suzuki T, Sugaya E, Yuyama N, Yasuda K, Tsuda T. Inhibitory effect of peony root extract on pentylenetetrazol-induced EEG power spectrum changes and extracellular calcium concentration changes in rat cerebral cortex. J Ethnopharmacol. 1991;33(1–2):159–167.

    Article  PubMed  CAS  Google Scholar 

  71. Lee JH, Yehl M, Ahn KS, Kim SH, Lieske JC. 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose attenuates renal cell migration, hyaluronan expression, and crystal adhesion. Eur J Pharmacol. 2009;606(1–3):32–37.

    Article  PubMed  CAS  Google Scholar 

  72. Duan D, Li Z, Luo H, Zhang W, Chen L, Xu X. Antiviral compounds from traditional Chinese medicines Galla Chinese as inhibitors of HCV NS3 protease. Bioorg Med Chem Lett. 2004;14(24):6041–6044.

    Article  PubMed  CAS  Google Scholar 

  73. Takechi M, Tanaka Y, Takehara M, Nonaka G, Nishioka I. Structure and antiherpetic activity among the tannins. Phytochemistry. 1985;24(10):2245–2250.

    Article  CAS  Google Scholar 

  74. Nakashima H, Ichiyama K, Hirayama F, et al. Sulfated pentagalloyl glucose (Y-ART-3) inhibits HIV replication and cytopathic effects in vitro, and reduces HIV infection in hu-PBL-SCID mice. Antivir Res. 1996;30(2–3):95–108.

    Article  PubMed  CAS  Google Scholar 

  75. Cannell RJ, Farmer P, Walker JM. Purification and characterization of pentagalloylglucose, and alpha-glucosidase inhibitor/antibiotic from the freshwater green alga Spirogyra varians. Biochem J. 1988;255(3):937–941.

    PubMed  CAS  Google Scholar 

  76. Park E, Lee NH, Baik JS, Jee Y. Elaeocarpus sylvestris modulates gamma-ray-induced immunosuppression in mice: implications in radioprotection. Phytother Res. 2008;22(8):1046–1051.

    Article  PubMed  CAS  Google Scholar 

  77. Adachi H, Konishi K, Horikoshi I. The effects of 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose on rat liver mitochondrial respiration. Chem Pharm Bull (Tokyo). 1989;37(5):1341–1344.

    CAS  Google Scholar 

  78. Toda M, Kawabata J, Kasai T. Inhibitory effects of ellagi- and gallotannins on rat intestinal alpha-glucosidase complexes. Biosci Biotechnol Biochem. 2001;65(3):542–547.

    Article  PubMed  CAS  Google Scholar 

  79. Li XC, Joshi AS, ElSohly HN, et al. Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies. J Nat Prod. 2002;65(12):1909–1914.

    Article  PubMed  CAS  Google Scholar 

  80. Hayashi T, Nagayama K, Arisawa M, et al. Pentagalloylglucose, a xanthine oxidase inhibitor from a Paraguayan crude drug, “Molle-i” (Schinus terebinthifolius). J Nat Prod. 1989;52(1):210–211.

    Article  PubMed  CAS  Google Scholar 

  81. Kiss AK, Derwinska M, Dawidowska A, Naruszewicz M. Novel biological properties of Oenothera paradoxa defatted seed extracts: effects on metallopeptidase activity. J Agric Food Chem. 2008;56(17):7845–7852.

    Article  PubMed  CAS  Google Scholar 

  82. Gyemant G, Zajacz A, Becsi B, et al. Evidence for pentagalloyl glucose binding to human salivary alpha-amylase through aromatic amino acid residues. Biochim Biophys Acta. 2009;1794(2):291–296.

    PubMed  CAS  Google Scholar 

  83. Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci. 2005;62(15):1707–1723.

    Article  PubMed  CAS  Google Scholar 

  84. Nithitanakool S, Pithayanukul P, Bavovada R, Saparpakorn P. Molecular docking studies and anti-tyrosinase activity of Thai mango seed kernel extract. Molecules. 2009;14(1):257–265.

    Article  PubMed  CAS  Google Scholar 

  85. Takechi M, Tanaka Y. Binding of 1, 2, 3, 4, 6-pentagalloylglucose to proteins, lipids, nucleic-acids and sugars. Phytochemistry. 1987;26(1):95–97.

    Article  Google Scholar 

  86. He Q, Shi B, Yao K. Interactions of gallotannins with proteins, amino acids, phospholipids and sugars. Food Chemistry. 2006;95(2):250–254.

    Article  CAS  Google Scholar 

  87. Hagerman AE, Butler LG. The specificity of proanthocyanidin-protein interactions. J Biol Chem. 1981;256(9):4494–4497.

    PubMed  CAS  Google Scholar 

  88. Hofmann T, Glabasnia A, Schwarz B, Wisman KN, Gangwer KA, Hagerman AE. Protein binding and astringent taste of a polymeric procyanidin, 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucopyranose, castalagin, and grandinin. J Agric Food Chem. 2006;54(25):9503–9509.

    Article  PubMed  CAS  Google Scholar 

  89. Baxter NJ, Lilley TH, Haslam E, Williamson MP. Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry. 1997;36(18):5566–5577.

    Article  PubMed  CAS  Google Scholar 

  90. Mehansho HB, Larry G, Carlson DM. Dietary tannins and salivary proline-rich proteins: interactions, induction, and defense mechanisms. Annu Rev Nutr. 1987;7:423–440.

    Article  PubMed  CAS  Google Scholar 

  91. Chen YM, Hagerman AE. Reaction pH and protein affect the oxidation products of beta-pentagalloyl glucose. Free Radic Res. 2005;39(2):117–124.

    Article  PubMed  CAS  Google Scholar 

  92. Ren Y, Himmeldirk K, Chen X. Synthesis and structure-activity relationship study of antidiabetic penta-O-galloyl-D-glucopyranose and its analogues. J Med Chem. 2006;49(9):2829–2837.

    Article  PubMed  CAS  Google Scholar 

  93. Cai K, Bennick A. Effect of salivary proteins on the transport of tannin and quercetin across intestinal epithelial cells in culture. Biochem Pharmacol. 2006;72(8):974–980.

    Article  PubMed  CAS  Google Scholar 

  94. Aguilar CN, Gutierrez-Sanchez G. Review: sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci Technol Int. 2001;7(5):373–382.

    CAS  Google Scholar 

  95. Vaquero I, Marcobal A, Munoz R. Tannase activity by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol. 2004;96(2):199–204.

    Article  PubMed  CAS  Google Scholar 

  96. Kwon T, Shim S, Lee J. Characterization of lactobacilli with tannase activity isolated from Kimchi. Food Sci Biotechnol. 2008;17(6):1322–1326.

    CAS  Google Scholar 

  97. Nishitani Y, Sasaki E, Fujisawaz T, Osawa R. Genotypic analyses of lactobacilli with a range of tannase activities isolated from human feces and fermented foods. Syst Appl Microbiol. 2004;27(1):109–117.

    Article  PubMed  CAS  Google Scholar 

  98. Noguchi N, Ohashi T, Shiratori T, et al. Association of tannase-prodncing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene. J Gastroenterol. 2007;42(5):346–351.

    Article  PubMed  CAS  Google Scholar 

  99. Mehansho H, Hagerman A, Clements S, Butler L, Rogler J, Carlson DM. Modulation of proline-rich protein-biosynthesis in rat parotid-glands by sorghums with high tannin levels. Proc Natl Acad Sci USA-Biol Sci. 1983;80(13):3948–3952.

    Article  CAS  Google Scholar 

  100. Nishizawa M, Yamagishi T, Nonaka G, Nishioka I, Nagasawa T, Oura H. Tannins and related compounds. XII. Isolation and characterization of galloylglucoses from Paeoniae Radix and their effects on urea-nitrogen concentration in rat serum. Chem Pharm Bull (Tokyo). 1983;31(8):2593–2600.

    CAS  Google Scholar 

  101. Riedl KM, Carando S, Alessio HM, McCarthy M*, Hagerman AE. Antioxidant activity of tannins and tannin-protein complexes: assessment in vitro and in vivo. In: Morello M, Shahadi F, editors. Free radicals in foods: chemistry, nutrition and health. Washington, DC: American Chemical Society; 2002. p. 188–200.

    Chapter  Google Scholar 

  102. Isenburg JC, Karamchandani NV, Simionescu DT, Vyavahare NR. Structural requirements for stabilization of vascular elastin by polyphenolic tannins. Biomaterials. 2006;27(19):3645–3651.

    PubMed  CAS  Google Scholar 

Download references

GRANT SUPPORT

This work was supported, in parts, by The Hormel Foundation, NIH grant CA136953 and by MRC grant (No. 2009-0063466) from Korea Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung-Hoon Kim or Junxuan Lü.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Li, L., Kim, SH. et al. Anti-Cancer, Anti-Diabetic and Other Pharmacologic and Biological Activities of Penta-Galloyl-Glucose. Pharm Res 26, 2066–2080 (2009). https://doi.org/10.1007/s11095-009-9932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9932-0

KEY WORDS

Navigation