Skip to main content
Log in

A Semi-physiological-Based Pharmacokinetic/Pharmacodynamic Model to Describe the Effects of Topotecan on B-Lymphocyte Lineage Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a semi-physiological-based model describing simultaneously the time course of immature and mature B-lymphocytes after topotecan (TPT) administration to tumor-bearing rats.

Methods

Twenty-four tumor-bearing BDIX male rats received a single 6 mg/kg intra-peritoneal dose of TPT or saline. Mature and immature B-cell levels were measured every two days during three weeks and showed a very different temporal pattern. Both B-cell populations declined rapidly, reaching the nadir at 3–4 days after TPT administration; however, mature cells returned to baseline at day 8, while immature B-cells stayed at nadir until day 9 instead. Data were modeled using the population approach with NONMEM VI.

Results

The model developed maintains the proliferation, maturation and degradation elements of previous published models for myelosuppresion. In order to describe the rapid recovery of mature cells, it includes a peripheral compartment providing a constant supply of mature cells to the bloodstream.

Conclusions

The major contribution of the model is its new structure and the dynamical consequences, demonstrating an independent behavior between mature and immature B-cells during recovery. The final model could represent a good basis for the optimization of cytotoxic drugs oriented to attain a maximum antitumor efficacy while minimizing hematological toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Crawford J, Dale DC, Lyman GH. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer. 2004;100:228–37.

    Article  PubMed  Google Scholar 

  2. Sung L, Nathan PC, Alibhai SM, Tomlinson GA, Beyene J. Meta-analysis: effect of prophylactic hematopoietic colony-stimulating factors on mortality and outcomes of infection. Ann Intern Med. 2007;147:400–11.

    PubMed  Google Scholar 

  3. Rajman I. PK/PD modelling and simulations: utility in drug development. Drug Discov Today. 2008;13:341–6.

    Article  PubMed  CAS  Google Scholar 

  4. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol. 2002;20:4713–21.

    Article  PubMed  Google Scholar 

  5. Friberg LE, Karlsson MO. Mechanistic models for myelosuppression. Invest New Drugs. 2003;21:183–94.

    Article  PubMed  CAS  Google Scholar 

  6. Leger F, Loos WJ, Bugat R, Mathijssen RH, Goffinet M, Verweij J, et al. Mechanism-based models for topotecan-induced neutropenia. Clin Pharmacol Ther. 2004;76:567–78.

    Article  PubMed  CAS  Google Scholar 

  7. Latz JE, Rusthoven JJ, Karlsson MO, Ghosh A, Johnson RD. Clinical application of a semimechanistic-physiologic population PK/PD model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol. 2006;57:427–35.

    Article  PubMed  Google Scholar 

  8. Troconiz IF, Garrido MJ, Segura C, Cendrós JM, Principe P, Peraire C, et al. Phase I dose-finding study and a pharmacokinetic/pharmacodynamic analysis of the neutropenic response of intravenous diflomotecan in patients with advanced malignant tumours. Cancer Chemother Pharmacol. 2006;57:727–35.

    Article  PubMed  CAS  Google Scholar 

  9. Fetterly GJ, Grasela TH, Sherman JW, Dul JL, Grahn A, Lecomte D, et al. Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel. Clin Cancer Res. 2008;14:5856–63.

    Article  PubMed  CAS  Google Scholar 

  10. Ostby I, Kvalheim G, Rusten LS, Grottum P. Mathematical modeling of granulocyte reconstitution after high-dose chemotherapy with stem cell support: effect of post-transplant G-CSF treatment. J Theor Biol. 2004;231:69–83.

    Article  PubMed  CAS  Google Scholar 

  11. Scholz M, Engel C, Loeffler M. Model-based design of chemotherapeutic regimens that account for heterogeneity in leucopoenia. Br J Haematol. 2006;132:723–35.

    Article  PubMed  CAS  Google Scholar 

  12. Gaudin E, Rosado M, Agenes F, McLean A, Freitas AA. B-cell homeostasis, competition, resources, and positive selection by self-antigens. Immunol Rev. 2004;197:102–15.

    Article  PubMed  CAS  Google Scholar 

  13. Herzog S, Reth M, Jumaa H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol. 2009;9:195–205.

    Article  PubMed  CAS  Google Scholar 

  14. Kunkel EJ, Butcher EC. Plasma-cell homing. Nat Rev Immunol. 2003;3:822–9.

    Article  PubMed  CAS  Google Scholar 

  15. Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005;202:1691–701.

    Article  PubMed  CAS  Google Scholar 

  16. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8:59–73.

    Article  PubMed  CAS  Google Scholar 

  17. Takata T, Suzumiya J, Ishikawa T, Takamatsu Y, Ikematsu H, Tamura K. Attenuated antibody reaction for the primary antigen but not for the recall antigen of influenza vaccination in patients with non-Hodgkin B-cell lymphoma after the administration of rituximab-CHOP. J Clin Exp Hematop. 2009;49:9–13.

    Article  PubMed  Google Scholar 

  18. Segura C, Bandres E, Troconiz IF, Garcia-Foncillas J, Sayar O, Dios-Vieitez C, et al. Hematological response of topotecan in tumor-bearing rats: modeling of the time course of different cellular populations. Pharm Res. 2004;21:567–73.

    Article  PubMed  CAS  Google Scholar 

  19. Morrisand DL, Komocsar WJ. Immunophenotyping analysis of peripheral blood, splenic, and thymic lymphocytes in male and female rats. J Pharmacol Toxicol Methods. 1997;37:37–46.

    Article  Google Scholar 

  20. Crawfordand JM, Goldschneider I. THY1 antigen and B lymphocyte differentiation in the rat. J Immunol. 1980;124:969–76.

    Google Scholar 

  21. Beal S, Sheiner L, AJ B. NONMEM user's guide. Ellicot: Icon Development Solutions; 2006.

    Google Scholar 

  22. Ludden TM, Beal SL, Sheiner LB. Comparison of the Akaike Information Criterion, the Schwarz criterion and the F test as guides to model selection. J Pharmacokinet Biopharm. 1994;22:431–45.

    Article  PubMed  CAS  Google Scholar 

  23. Karlsson M, Holford NH. A tutorial on visual predictive checks, PAGE 17 Abstr 1434 (2008) www.page-meeting.org/?abstract=1434.

  24. Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol. 2009;9:491–502.

    Article  PubMed  CAS  Google Scholar 

  25. Agenes F, Rosado MM, Freitas AA. Independent homeostatic regulation of B cell compartments. Eur J Immunol. 1997;27:1801–7.

    Article  PubMed  CAS  Google Scholar 

  26. Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007;82:17–20.

    Article  PubMed  CAS  Google Scholar 

  27. Bueno L, de Alwis DP, Pitou C, Yingling J, Lahn M, Glatt S, et al. Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-beta kinase antagonist, in mice. Eur J Cancer. 2008;44:142–50.

    Article  PubMed  CAS  Google Scholar 

  28. Woo S, Krzyzanski W, Jusko WJ. Pharmacodynamic model for chemotherapy-induced anemia in rats. Cancer Chemother Pharmacol. 2008;62:123–33.

    Article  PubMed  CAS  Google Scholar 

  29. Panetta JC, Schaiquevich P, Santana VM, Stewart CF. Using pharmacokinetic and pharmacodynamic modeling and simulation to evaluate importance of schedule in topotecan therapy for pediatric neuroblastoma. Clin Cancer Res. 2008;14:318–25.

    Article  PubMed  CAS  Google Scholar 

  30. Cancro MP. Peripheral B-cell maturation: the intersection of selection and homeostasis. Immunol Rev. 2004;197:89–101.

    Article  PubMed  CAS  Google Scholar 

  31. Dammers PM, de Boer NK, Deenen GJ, Nieuwenhuis P, Kroese FG. The origin of marginal zone B cells in the rat. Eur J Immunol. 1999;29:1522–31.

    Article  PubMed  CAS  Google Scholar 

  32. Yao Z, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetic/pharmacodynamic modeling of corticosterone suppression and lymphocytopenia by methylprednisolone in rats. J Pharm Sci. 2008;97:2820–32.

    Article  PubMed  CAS  Google Scholar 

  33. Milicevic NM, Nohroudi K, Milicevic Z, Hedrich HJ, Westermann J. T cells are required for the peripheral phase of B-cell maturation. Immunology. 2005;116:308–17.

    Article  PubMed  CAS  Google Scholar 

  34. Mellor AL, Munn DH. Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol. 2008;8:74–80.

    Article  PubMed  CAS  Google Scholar 

  35. Krzyzanski W, Jusko WJ. Indirect pharmacodynamic models for responses with multicompartmental distribution or polyexponential disposition. J Pharmacokinet Pharmacodyn. 2001;28:57–78.

    Article  PubMed  CAS  Google Scholar 

  36. Zandvoort A, Lodewijk ME, Klok PA, Dammers PM, Kroese FG, Timens W. Slow recovery of follicular B cells and marginal zone B cells after chemotherapy: implications for humoral immunity. Clin Exp Immunol. 2001;124:172–9.

    Article  PubMed  CAS  Google Scholar 

  37. Westwemann J, Puskas Z, Pabbst R. Blood transit and recirculation kinetics of lymphocyte subsets in normal rats. Scand J Immunol. 1988;28:203–10.

    Article  Google Scholar 

  38. Tornøe CW, Agersø H, Senderovitz T, Nielsen HA, Madsen H, Karlsson MO, et al. Population pharmacokinetic/pharmacodynamic (PK/PD) modelling of the hypothalamic-pituitary-gonadal axis following treatment with GnRH analogues. Br J Clin Pharmacol. 2007;63:648–64.

    Article  PubMed  CAS  Google Scholar 

  39. Overgaard RV, Holford N, Rytved KA, Madsen H. PKPD model of interleukin-21 effects on thermoregulation in monkeys–application and evaluation of stochastic differential equations. Pharm Res. 2007;24:298–309.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iñaki F. Trocóniz.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1: (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vélez de Mendizábal, N., Martínez-Forero, I., Garrido, M.J. et al. A Semi-physiological-Based Pharmacokinetic/Pharmacodynamic Model to Describe the Effects of Topotecan on B-Lymphocyte Lineage Cells. Pharm Res 27, 431–441 (2010). https://doi.org/10.1007/s11095-009-0025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-0025-x

Key words

Navigation