Skip to main content

Advertisement

Log in

Efficient siRNA Delivery with Non-viral Polymeric Vehicles

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Sequence-specific gene silencing using small interfering RNA (siRNA) provides a potent and specific method for gene expression, thus is now being evaluated in clinical trials as a novel therapeutic strategy. As a results, there has been a significant surge of interest in the application of siRNA in therapeutics as a means of silencing the specific gene function. However, for siRNA technology to be valuable and effective, the development of efficient siRNA delivery strategy is essential for improving biological activities such as stability, cellular uptake, sequence-specificity, devoid of nonspecific knockdown and toxic side effects. Accordingly, a number of delivery systems, both viral and nonviral, have been reported and some of them successfully used for the introduction of siRNA into cells both in vitro and in vivo. Here, we discuss the current understanding of synthetic siRNA delivery mechanism and strategies of siRNA delivery by non-viral polymeric vehicles which are currently used in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. D. Bumcrot, M. Manoharan, V. Koteliansky, and D. W. Sah. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2:711–719 (2006). doi:10.1038/nchembio839.

    Article  PubMed  CAS  Google Scholar 

  2. A. de Fougerolles, H. P. Vornlocher, J. Maraganore, and J. Lieberman. Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov. 6:443–453 (2007). doi:10.1038/nrd2310.

    Article  PubMed  Google Scholar 

  3. R. K. Leung, and P. A. Whittaker. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol. Ther. 107:222–239 (2005). doi:10.1016/j.pharmthera.2005.03.004.

    Article  PubMed  CAS  Google Scholar 

  4. G. L. Sen, and H. M. Blau. Argonaute 2/RISC resides in sites of mammalian decay known as cytoplasmic bodies. Nat. Cell Biol. 7:633–636 (2005). doi:10.1038/ncb1265.

    Article  PubMed  CAS  Google Scholar 

  5. M. A. Behlke. Progress towards in vivo use of siRNAs. Mol. Ther. 13:644–670 (2006). doi:10.1016/j.ymthe.2006.01.001.

    Article  PubMed  CAS  Google Scholar 

  6. D. H. Kim, and J. J. Rossi. Strategies for silencing human disease using RNA interference. Nat. Rev. Genet. 8:173–184 (2007). doi:10.1038/nrg2006.

    Article  PubMed  CAS  Google Scholar 

  7. D. R. Corey. Chemical modification: the key to clinical application of RNA interference? J. Clin. Invest. 117:3615–3622 (2007). doi:10.1172/JCI33483.

    Article  PubMed  CAS  Google Scholar 

  8. B. Urban-Klein, S. Werth, S. Abuharbeid, F. Czubayko, and A. Aigner. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12:461–466 (2005). doi:10.1038/sj.gt.3302425.

    Article  PubMed  CAS  Google Scholar 

  9. P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA. 84:7413–7417 (1987). doi:10.1073/pnas.84.21.7413.

    Article  PubMed  CAS  Google Scholar 

  10. E. Vives, P. Brodin, and B. Lebleu. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272:16010–16017 (1997). doi:10.1074/jbc.272.25.16010.

    Article  PubMed  CAS  Google Scholar 

  11. A. L. Jackson, J. Burchard, D. Leake, A. Reynolds, J. Schelter, J. Guo, J. M. Johnson, L. Lim, J. Karpilow, K. Nichols, W. Marshall, A. Khvorova, and P. S. Linsley. Position-specific chemical modification of siRNAs reduces off-target transcript silencing. RNA. 12:1197–1205 (2006). doi:10.1261/rna.30706.

    Article  PubMed  CAS  Google Scholar 

  12. D. S. Schwarz, G. Hutvagner, T. Du, Z. Xu, N. Aronin, and P. D. Zamore. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 115:199–208 (2003). doi:10.1016/S0092-8674(03)00759-1.

    Article  PubMed  CAS  Google Scholar 

  13. A. Khvorova, A. Reynolds, and S. D. Jayasena. Functional siRNAs and miRNAs exhibit strand bias. Cell. 115:209–216 (2003). doi:10.1016/S0092-8674(03)00801-8.

    Article  PubMed  CAS  Google Scholar 

  14. A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W. S. Marshall, and A. Khvorova. Rational siRNA design for RNA interference. Nat. Biotechnol. 22:326–330 (2004). doi:10.1038/nbt936.

    Article  PubMed  CAS  Google Scholar 

  15. D. A. Braasch, S. Jensen, Y. Liu, K. Kaur, K. Arar, M. A. White, and D. R. Corey. RNA interference in mammalian cells by chemically modified RNA. Biochemistry. 42:7967–7975 (2003). doi:10.1021/bi0343774.

    Article  PubMed  CAS  Google Scholar 

  16. Y. L. Chiu, and T. M. Rana. siRNA function in RNAi: a chemical modification analysis. RNA. 9:1034–1048 (2003). doi:10.1261/rna.5103703.

    Article  PubMed  CAS  Google Scholar 

  17. M. Amarzguioui, T. Holen, E. Babaie, and H. Prydz. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31:589–595 (2003). doi:10.1093/nar/gkg147.

    Article  PubMed  CAS  Google Scholar 

  18. M. Rusckowski, T. Qu, A. Roskey, and S. Agrawal. Biodistribution and metabolism of a mixed backbone oligonucleotide (GEM 231) following single and multiple dose administration in mice. Antisense Nucleic Acid Drug Dev. 10:333–345 (2000).

    PubMed  CAS  Google Scholar 

  19. H. Zhang, J. Cook, J. Nickel, R. Yu, K. Stecker, K. Myers, and N. M. Dean. Reduction of liver Fad expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nat. Biotechnol. 18:862–867 (2000). doi:10.1038/78475.

    Article  PubMed  CAS  Google Scholar 

  20. A. M. Kawasaki, M. D. Casper, S. M. Freier, E. A. Lesnik, M. C. Zounes, L. L. Cummins, C. Gonzalez, and P. D. Cook. Uniformly modified 2’-deoxy-2’-fluoro phosphorothioate oligonucleotides as nuclease resistant antisense compounds with high affinity and specificity for RNA targets. J. Med. Chem. 36:831–841 (1993). doi:10.1021/jm00059a007.

    Article  PubMed  CAS  Google Scholar 

  21. C. R. Allerson, N. Sioufi, R. Jarres, T. P. Prakash, N. Naik, A. Berdeja, L. Wanders, R. H. Griffey, E. E. Swayze, and B. Bhat. Fully 2’-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 48:901–904 (2005). doi:10.1021/jm049167j.

    Article  PubMed  CAS  Google Scholar 

  22. Y. L. Chiu, A. Ali, C. Y. Chu, H. Cao, and T. M. Rana. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem. Biol. 11:1165–1175 (2004). doi:10.1016/j.chembiol.2004.06.006.

    Article  PubMed  CAS  Google Scholar 

  23. J. Soutschek, A. Akinc, B. Bramlage, K. Charisse, R. Constien, M. Donoghue, S. Elbashir, A. Geick, P. Hadwiger, J. Harborth, M. John, V. Kesavan, G. Lavine, R. K. Pandey, T. Racie, K. G. Rajeev, I. Rohl, I. Toudjarska, G. Wang, S. Wuschko, D. Bumcrot, V. Koteliansky, S. Limmer, M. Manoharan, and H. P. Vornlocher. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 432:173–178 (2004). doi:10.1038/nature03121.

    Article  PubMed  CAS  Google Scholar 

  24. S. H. Kim, J. H. Jeong, S. H. Lee, S. W. Kim, and T. G. Park. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Rel. 129:107–116 (2008). doi:10.1016/j.jconrel.2008.03.008.

    Article  CAS  Google Scholar 

  25. M. Lee, and S. W. Kim. Polymeric gene carriers. Pharm. News. 9:407–415 (2002).

    CAS  Google Scholar 

  26. M. Lee, and S. W. Kim. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res. 22:1–10 (2005). doi:10.1007/s11095-004-9003-5.

    Article  PubMed  CAS  Google Scholar 

  27. E. Song, P. Zhu, S. K. Lee, D. Chowdhury, S. Kussman, D. M. Dykxhoorn, Y. Feng, D. Palliser, D. B. Weiner, P. Shankar, W. A. Marasco, and J. Lieberman. Antibody mediated in vivo delivery of small interfering RNAs via cell surface receptors. Nat. Biotechnol. 23:709–714 (2005). doi:10.1038/nbt1101.

    Article  PubMed  CAS  Google Scholar 

  28. J. O. McNamara, E. R. Andrechek, Y. Wang, K. D. Viles, R. E. Rempel, E. Gilboa, B. A. Sullenger, and P. H. Giangrande. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24:1005–1015 (2006). doi:10.1038/nbt1223.

    Article  PubMed  CAS  Google Scholar 

  29. B. J. Hicke, and A. W. Stephens. Escort aptamers; a delivery service for diagnosis and therapy. J. Clin. Invest. 106:923–928 (2000). doi:10.1172/JCI11324.

    Article  PubMed  CAS  Google Scholar 

  30. M. Blank, T. Weinschenk, M. Priemer, and H. Schluesener. Systemic evolution of a DNA aptamer binding to rat brain tumor microvessels. Selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem. 276:16464–16468 (2001). doi:10.1074/jbc.M100347200.

    Article  PubMed  CAS  Google Scholar 

  31. D. A. Daniels, H. Chen, B. J. Hicke, K. M. Swiderek, and L. Gold. A tenascin-C aptamer identified by tumor cell SELEX: systemic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. USA. 100:15416–15421 (2003). doi:10.1073/pnas.2136683100.

    Article  PubMed  CAS  Google Scholar 

  32. K. N. Morris, K. B. Jensen, C. M. Julin, M. Weil, and L. Gold. High affinity ligands from in vitro selection: complex targets. Proc. Natl. Acad. Sci. U. S. A. 95:2902–2907 (1998). doi:10.1073/pnas.95.6.2902.

    Article  PubMed  CAS  Google Scholar 

  33. T. C. Chu, K. Y. Twu, A. D. Ellington, and M. Levy. Aptamer mediated siRNA delivery. Nucleic Acids Res. 34:e73 (2006). doi:10.1093/nar/gkl388.

    Article  PubMed  Google Scholar 

  34. S. Akhtar, M. D. Hughes, A. Khan, M. Bibby, M. Hussain, Q. Nawaz, J. Double and P. Sayyed. The delivery of antisense therapeutics. Adv. Drug Deliv. Rev. 44:3–21 (2000). doi:10.1016/S0169-409X(00)00080-6.

    Article  PubMed  CAS  Google Scholar 

  35. M. D. Hughes, M. Hussain, Q. Nawaz, P. Sayyed, and S. Akhtar. The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discov. Today. 6:303–315 (2001). doi:10.1016/S1359-6446(00)00326-3.

    Article  PubMed  CAS  Google Scholar 

  36. I. R. Gilmore, S. P. Fox, A. J. Hollins, M. Sohail, and S. Akhtar. The design and exogenous delivery of siRNA for post-transcriptional gene silencing. J. Drug Target. 12:315–340 (2004). doi:10.1080/10611860400006257.

    Article  PubMed  CAS  Google Scholar 

  37. S. Kawakami, and M. Hashida. Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab. Pharmacokinet. 22:142–151 (2007). doi:10.2133/dmpk.22.142.

    Article  PubMed  CAS  Google Scholar 

  38. O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethyleneimine. Proc. Natl. Acad. Sci. U. S. A. 92:7297–7301 (1995). doi:10.1073/pnas.92.16.7297.

    Article  PubMed  CAS  Google Scholar 

  39. A. Aigner. Delivery systems for the direct application of siRNAs to induce RNA interference(RNAi) in vivo. J. Biomed. Biotechnol. 4:71659 (2006).

    Google Scholar 

  40. D. Fischer, T. Bieber, Y. Li, H. P. Elsasser, and T. Kissel. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16:1273–1279 (1999). doi:10.1023/A:1014861900478.

    Article  PubMed  CAS  Google Scholar 

  41. P. Marschall, N. Malik, and Z. Larin. Transfer of YACs up to 2.3 Mb intact into human cells with polyethylenimine. Gene Ther. 6:1634–1637 (1999). doi:10.1038/sj.gt.3300975.

    Article  PubMed  CAS  Google Scholar 

  42. W. T. Godbey, M. A. Barry, P. Saggau, K. K. Wu, and A. G. Mikos. Poly(ethylenimine)-mediated transfection: a new paradigm for gene delivery. J. Biomed. Mater. Res. 51:321–328 (2000). doi:10.1002/1097-4636(20000905)51:3<321::AID-JBM5>3.0.CO;2-R.

    Article  PubMed  CAS  Google Scholar 

  43. A. V. Harpe, H. Petersen, Y. Li, and T. Kissel. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Rel. 69:309–322 (2000). doi:10.1016/S0168-3659(00)00317-5.

    Article  Google Scholar 

  44. K. Kunath, A. V. Harpe, D. Fischer, H. Petersen, U. Bickel, K. Voigt, and T. Kissel. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Rel. 89:113–125 (2003). doi:10.1016/S0168-3659(03)00076-2.

    Article  CAS  Google Scholar 

  45. M. L. Read, S. Singh, Z. Ahmed, M. Stevenson, S. S. Briggs, D. Oupicky, L. B. Barrett, R. Spice, M. Kendall, M. Berry, J. A. Preece, A. Logan, and L. W. Seymour. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 33:e86 (2005). doi:10.1093/nar/gni085.

    Article  PubMed  Google Scholar 

  46. M. Thomas, J. J. Lu, Q. Ge, C. Zhang, J. Chen, and A. M. Klibanov. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. U. S. A. 102:5679–5684 (2005). doi:10.1073/pnas.0502067102.

    Article  PubMed  CAS  Google Scholar 

  47. A. C. Grayson, A. M. Doody, and D. Putnam. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm. Res. 23:1868–1876 (2006). doi:10.1007/s11095-006-9009-2.

    Article  PubMed  Google Scholar 

  48. A. Zintchenko, A. Philipp, A. Dehshahri, and E. Wagner. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug. Chem. 19:1448–1455 (2008). doi:10.1021/bc800065f.

    Article  PubMed  CAS  Google Scholar 

  49. C. H. Ahn, S. Y. Chae, Y. H. Bae, and S. W. Kim. Biodegradable poly(ethylenimine) for plasmid DNA delivery. J. Control. Rel. 80:273–282 (2002). doi:10.1016/S0168-3659(01)00547-8.

    Article  CAS  Google Scholar 

  50. S. Han, R. I. Mahato, and S. W. Kim. Water-soluble lipopolymer for gene delivery. Bioconjugate Chem. 12:337–345 (2001). doi:10.1021/bc000120w.

    Article  CAS  Google Scholar 

  51. J. W. Yockman, A. Maheshwari, S. Han, and S. W. Kim. Tumor regression by repeated intratumoral delivery of water soluble lipopolymers/p2CMVmIL-12 complexes. J. Control. Rel. 87:177–186 (2003). doi:10.1016/S0168-3659(02)00362-0.

    Article  CAS  Google Scholar 

  52. M. Lee, J. Rentz, S. Han, D. A. Bull, and S. W. Kim. Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium. Gene Ther. 10:585–593 (2003). doi:10.1038/sj.gt.3301938.

    Article  PubMed  CAS  Google Scholar 

  53. M. Lee, J. Rentz, M. Bikram, S. Han, D. A. Bull, and S. W. Kim. Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther. 10:1535–1542 (2003). doi:10.1038/sj.gt.3302034.

    Article  PubMed  CAS  Google Scholar 

  54. W. J. Kim, C. W. Chang, M. Lee, and S. W. Kim. Efficient siRNA delivery using water soluble lipopolymer for anti-angiogenic gene therapy. J. Control. Rel. 118:357–363 (2007). doi:10.1016/j.jconrel.2006.12.026.

    Article  CAS  Google Scholar 

  55. J. H. Jeong, L. V. Christensen, J. W. Yockman, Z. Zhong, J. F. Engbersen, W. J. Kim, J. Feijen, and S. W. Kim. Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials. 28:1912–1917 (2007). doi:10.1016/j.biomaterials.2006.12.019.

    Article  CAS  Google Scholar 

  56. M. Breunig, C. Hozsa, C. U. Lungwitz, K. Watanabe, I. Umeda, H. Kato, and A. Goepferich. Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J. Control. Rel. 130:57–63 (2008). doi:10.1016/j.jconrel.2008.05.016.

    Article  CAS  Google Scholar 

  57. D. W. Bartlett, and M. E. Davis. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol. Bioeng. 99:975–985 (2008). doi:10.1002/bit.21668.

    Article  PubMed  CAS  Google Scholar 

  58. S. Hu-Lieskovan, J. D. Heidel, D. W. Bartlett, M. E. Davis, and T. J. Triche. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in murine model of metastatic Ewing’s sarcoma. Cancer Res. 65:8984–8992 (2005). doi:10.1158/0008-5472.CAN-05-0565.

    Article  PubMed  CAS  Google Scholar 

  59. J. D. Heidel, Z. Yu, J. Y. Liu, S. M. Rele, Y. Liang, R. K. Zeidan, D. J. Kornbrust, and M. E. Davis. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl. Acad. Sci. U. S. A. 104:5715–5721 (2007). doi:10.1073/pnas.0701458104.

    Article  PubMed  CAS  Google Scholar 

  60. U. N. Verma, R. M. Surabhi, A. Schmaltieg, C. Becerra, and R. B. Gaynor. Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin. Cancer Res. 9:1291–1300 (2003).

    PubMed  CAS  Google Scholar 

  61. A. S. Arnold, Y. L. Tang, K. Qian, L. Shen, V. Valencia, M. I. Phillips, and Y. C. Zhang. Specific beta1-adrenergic receptor silencing with small interfering RNA lowers high blood pressure and improves cardiac function in myocardial ischemia. J. Hypertens. 25:197–205 (2007). doi:10.1097/01.hjh.0000254374.73241.ab.

    Article  PubMed  CAS  Google Scholar 

  62. T. S. Zimmermann, A. C. Lee, A. Akinc, B. Bramlage, D. Bumcrot, M. N. Fedoruk, J. Harborth, J. A. Heyes, L. B. Jeffs, M. John, A. D. Judge, K. Lam, K. McClintock, L. V. Nechev, L. R. Palmer, T. Racie, I. Röhl, S. Seiffert, S. Shanmugam, V. Sood, J. Soutschek, I. Toudjarska, A. J. Wheat, E. Yaworski, W. Zedalis, V. Koteliansky, M. Manohara, H. P. Vornlocher, and I. MacLachlan. RNAi-mediated gene silencing in non-human primates. Nature. 441:111–114 (2006). doi:10.1038/nature04688.

    Article  PubMed  CAS  Google Scholar 

  63. T. Suzuki, S. Futaki, M. Niwa, S. Tanaka, K. Ueda, and Y. Sugiura. Possible existence of common internalization mechanisms among arginine-rich peptides. J. Biol. Chem. 277:2437–2443 (2002). doi:10.1074/jbc.M110017200.

    Article  PubMed  CAS  Google Scholar 

  64. V. P. Torchilin, R. Rammohan, V. Weissig, and T. S. Levchenko. Tat peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in presence of metabolic inhibitors. Proc. Natl. Acad. Sci. U. S. A. 98:8786–8791 (2001). doi:10.1073/pnas.151247498.

    Article  PubMed  CAS  Google Scholar 

  65. J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M. J. Gait, L. V. Chernomordik, and B. Lebleu. Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278:585–590 (2003). doi:10.1074/jbc.M209548200.

    Article  PubMed  CAS  Google Scholar 

  66. J. A. Lecifert, S. Harkins, and J. L. Whitton. Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity. Gene Ther. 9:1422–1428 (2002). doi:10.1038/sj.gt.3301819.

    Article  Google Scholar 

  67. D. Derossi, A. H. Joliot, G. Chassaing, and A. Prochiantz. The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269:10444–10450 (1994).

    PubMed  CAS  Google Scholar 

  68. M. Pooga, C. Kut, M. Kihlmark, M. Hällbrink, S. Fernaeus, R. Raid, T. Land, E. Hallberg, T. Bartfai, and U. Langel. Cellular translocation of proteins by transportan. FASEB J. 15:1451–1453 (2001).

    PubMed  CAS  Google Scholar 

  69. S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, and Y. Sugiura. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276:5836–5840 (2001). doi:10.1074/jbc.M007540200.

    Article  PubMed  CAS  Google Scholar 

  70. A. Muratovska, and M. R. Eccles. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 558:63–68 (2004). doi:10.1016/S0014-5793(03)01505-9.

    Article  PubMed  CAS  Google Scholar 

  71. T. J. Davidson, S. Harel, V. A. Arboleda, G. F. Prunell, M. L. Shelanski, L. A. Greene, and C. M. Troy. Highly efficient small interfering RNA delivery to primary mammalian neurons induces microRNA-like effects before mRNA degradation. J. Neurosci. 24:10040–10046 (2004). doi:10.1523/JNEUROSCI.3643-04.2004.

    Article  PubMed  CAS  Google Scholar 

  72. J. J. Turner, S. Jones, M. M. Fabani, G. Ivanova, A. A. Arzumanov, and M. J. Gait. RNA targeting 1with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol. Dis. 38:1–7 (2007). doi:10.1016/j.bcmd.2006.10.003.

    Article  PubMed  CAS  Google Scholar 

  73. S. W. Jones, R. Christison, K. Bundell, C. J. Voyce, S. M. Brockbank, P. Newham, and M. A. Lindsay. Characterization of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. 145:1093–1102 (2005). doi:10.1038/sj.bjp.0706279.

    Article  PubMed  CAS  Google Scholar 

  74. W. J. Kim, L. V. Christensen, S. Jo, J. W. Yockman, J. H. Jeong, Y. H. Kim, and S. W. Kim. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol. Ther. 14:343–350 (2006). doi:10.1016/j.ymthe.2006.03.022.

    Article  PubMed  Google Scholar 

  75. M. Hashida, M. Nishikawa, F. Yamashita, and Y. Takakura. Cell-specific delivery of genes with glycosylated carriers. Adv. Drug Deliv. Rev. 52:187–196 (2001). doi:10.1016/S0169-409X(01)00209-5.

    Article  PubMed  CAS  Google Scholar 

  76. Y. H. Choi, F. Liu, J. S. Park, and S. W. Kim. Lactose-poly(ethylene glycol)-grafted poly-l-lysine as hepatoma cell-targeted gene carrier. Bioconjug. Chem. 9:708–718 (1998). doi:10.1021/bc980017v.

    Article  PubMed  CAS  Google Scholar 

  77. T. Bettinger, J. S. Remy, and P. Erbacher. Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes. Bioconjug. Chem. 10:558–561 (1999). doi:10.1021/bc990006h.

    Article  PubMed  CAS  Google Scholar 

  78. K. Sagara, and S. W. Kim. A new synthesis of galactose-poly(ethylene glycol)-polyethylenimine for gene delivery to hepatocytes. J. Control. Rel. 79:271–281 (2002). doi:10.1016/S0168-3659(01)00555-7.

    Article  CAS  Google Scholar 

  79. M. Oishi, Y. Nagasaki, K. Itaka, N. Nishiyama, and K. Kataoka. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127:1624–1625 (2005). doi:10.1021/ja044941d.

    Article  PubMed  CAS  Google Scholar 

  80. J. F. Ross, P. K. Chaudhuri, and M. Ratnam. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 73:2432–2443 (1994). doi:10.1002/1097-0142(19940501)73:9<2432::AID-CNCR2820730929>3.0.CO;2-S.

    Article  PubMed  CAS  Google Scholar 

  81. S. Wang, R. J. Lee, G. Cauchon, D. G. Gorenstein, and P. S. Low. Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc. Natl. Acad. Sci. U. S. A. 92:3318–3322 (1995). doi:10.1073/pnas.92.8.3318.

    Article  PubMed  CAS  Google Scholar 

  82. J. J. Turek, C. P. Leamon, and P. S. Low. Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. J. Cell Sci. 106:423–430 (1993).

    PubMed  CAS  Google Scholar 

  83. K. A. Mislick, J. D. Baldeschwieler, J. F. Kayyem, and T. J. Meade. Transfection of folate-polylysine DNA complexes: evidence for lysosomal delivery. Bioconjug. Chem. 6:512–515 (1995). doi:10.1021/bc00035a002.

    Article  PubMed  CAS  Google Scholar 

  84. S. H. Kim, H. J. Mok, J. M. Jeong, S. W. Kim, and T. G. Park. Comparative evaluation of target-specific GFP gene silencing efficiencies for antisense ODN, synthetic siRNA, and siRNA plasmid complexed with PEI-PEG-FOL. Bioconjug. Chem. 17:241–244 (2006). doi:10.1021/bc050289f.

    Article  PubMed  Google Scholar 

  85. S. H. Kim, H. J. Jeong, C. K. Cho, S. W. Kim, and T. G. Park. Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine). J. Control. Rel. 104:223–232 (2005). doi:10.1016/j.jconrel.2005.02.006.

    Article  CAS  Google Scholar 

  86. P. C. Brooks, R. A. Clark, and D. A. Cheresh. Requirement of vascular integrin alpha 5 beta 3 for angiogenesis. Science. 264:569–571 (1994). doi:10.1126/science.7512751.

    Article  PubMed  CAS  Google Scholar 

  87. D. A. Sipkins, D. A. Cheresh, M. R. Kazemi, L. M. Nevin, M. D. Bednarski, and K. C. Li. Detection of tumor angiogenesis in vivo by alpha 5 beta3-targeted magnetic resonance imaging. Nat. Med. 4:623–626 (1998). doi:10.1038/nm0598-623.

    Article  PubMed  CAS  Google Scholar 

  88. W. J. Kim, J. M. Yockman, M. Lee, J. H. Jeong, Y. H. Kim, and S. W. Kim. Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J. Control. Rel. 106:224–234 (2005). doi:10.1016/j.jconrel.2005.04.016.

    Article  CAS  Google Scholar 

  89. W. J. Kim, J. M. Yockman, J. H. Jeong, L. V. Christensen, M. Lee, Y. H. Kim, and S. W. Kim. Anti-angiogenic inhibition of tumor growth by systemic delivery of PEI-g-PEG-RGD/pCMV-sFlt-1 complexes in tumor-bearing mice. J. Control. Rel. 114:381–388 (2006). doi:10.1016/j.jconrel.2006.05.029.

    Article  CAS  Google Scholar 

  90. R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32: e149 (2004). doi:10.1093/nar/gnh140.

    Article  PubMed  Google Scholar 

  91. P. Aisen. Transferrin receptor 1. Int. J. Biochem. Cell Biol. 36:2137–2143 (2004). doi:10.1016/j.biocel.2004.02.007.

    Article  PubMed  CAS  Google Scholar 

  92. K. A. Howard, U. L. Rahbek, X. Liu, C. K. Damgaard, S. Z. Glud, M. O. Andersen, M. B. Hovgaard, A. Schmitz, J. R. Nyengaard, F. Besenbacher, and J. Kjems. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14:476–484 (2006). doi:10.1016/j.ymthe.2006.04.010.

    Article  PubMed  CAS  Google Scholar 

  93. J. Y. Pille, H. Li, E. Blot, J. R. Bertrand, L. L. Pritchard, P. Opolon, A. Maksimenko, H. Lu, J. P. Vannier, J. Soria, C. Malvy, and C. Soria. Intravenous delivery of anti-rhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Human Gene Ther. 17:1019–1026 (2006). doi:10.1089/hum.2006.17.1019.

    Article  CAS  Google Scholar 

  94. A. Khan, M. Benboubetra, P. Z. Sayyed, K. W. Ng, S. Fox, G. Beck, I. F. Benter, and S. Akhtar. Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. J. Drug Target. 12:393–404 (2004). doi:10.1080/10611860400003858.

    Article  PubMed  CAS  Google Scholar 

  95. H. Kang, R. DeLong, M. H. Fisher, and R. L. Juliano. Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm. Res. 22:2099–2106 (2005). doi:10.1007/s11095-005-8330-5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Korea Healthcare technology R&D Project, Ministry of Health and Welfare, Republic of Korea (A080919), the Nano-Biotechnology Project (Regenomics), Ministry of Science and Technology, Republic of Korea (850-20080090), and a grant from the National Institute of Health, USA (NIH, CA 107070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Wan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, W.J., Kim, S.W. Efficient siRNA Delivery with Non-viral Polymeric Vehicles. Pharm Res 26, 657–666 (2009). https://doi.org/10.1007/s11095-008-9774-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9774-1

KEY WORDS

Navigation