Skip to main content

Advertisement

Log in

Design and Synthesis of N 4,N 9-Disubstituted Spermines for Non-viral siRNA Delivery – Structure-Activity Relationship Studies of siFection Efficiency Versus Toxicity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study the effect of sequentially changing the chain length, oxidation level, and charge distribution in N 4,N 9-diacyl and N 4,N 9-dialkyl spermines on siRNA formulation, and then to compare their lipoplex transfection efficiency in cell lines.

Methods

Eight N 4,N 9-diacyl polyamines: N 4,N 9-[didecanoyl, dilauroyl, dimyristoyl, dimyristoleoyl, dipalmitoyl, distearoyl, dioleoyl and diretinoyl]-1,12-diamino-4,9-diazadodecane were synthesized. Their abilities to bind to siRNA and form nanoparticles were studied using a RiboGreen intercalation assay and particle sizing. Two diamides were also reduced to afford tetraamines N 4,N 9-distearyl- and N 4,N 9-dioleyl-1,12-diamino-4,9-diazadodecane. Delivery of fluorescein-labelled Label IT® RNAi Delivery Control was studied in FEK4 primary skin cells and in an immortalized cancer cell line (HtTA), and compared with TransIT-TKO.

Results

The design, synthesis, and structure-activity relationship studies of a series of N 4,N 9-disubstituted spermines as efficient vectors for non-viral siRNA delivery to primary skin and cancer cell lines is reported. These non-liposomal cationic lipids are promising siRNA carriers based on the naturally occurring polyamine spermine showing that C-18 is a better chain length as shorter chains are more toxic.

Conclusions

N 4,N 9-Distearoyl spermine and N 4,N 9-dioleoyl spermine are efficient siRNA formulation and delivery vectors, even in the presence of serum, comparable to TransIT-TKO. However, four positive charges distributed as in spermine was significantly more toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EMEM:

Earle’s Minimal Essential Medium

FCS:

foetal calf serum

HRMS:

high-resolution mass spectrometry

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

References

  1. I. S. Blagbrough, and H. M. Ghonaim. Polyamines and their conjugates for gene and siRNA delivery. In G. Dandrifosse (ed.), Biological aspects of biogenic amines, polyamines and polyamine conjugates, Research Signpost, India, 2008 in press.

  2. K. Aoki, S. Furuhata, K. Hatanaka, M. Maeda, J. S. Remy, J. P. Behr, M. Terada, and T. Yoshida. Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity. Gene Ther. 8:508–514 (2001). doi:10.1038/sj.gt.3301435.

    Article  Google Scholar 

  3. G. Dolivet, J. L. Merlin, M. Barberi-Heyob, C. Ramacci, P. Erbacher, R. M. Parache, J. P. Behr, and F. Guillemin. In vivo growth inhibitory effect of iterative wild-type p53 gene transfer in human head and neck carcinoma xenografts using glucosylated polyethylenimine nonviral vector. Cancer Gene Ther. 9:708–714 (2002). doi:10.1038/sj.cgt.7700485.

    Article  Google Scholar 

  4. S. Ferrari, A. Pettenazzo, N. Garbati, F. Zacchello, J. P. Behr, and M. Scarpa. Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochim. Biophys. Acta, Gene Struct. Expression. 1447:219–225 (1999).

    Article  Google Scholar 

  5. F. E. Ruiz, J. P. Clancy, M. A. Perricone, Z. Bebok, J. S. Hong, S. H. Cheng, D. P. Meeker, K. R. Young, R. A. Schoumacher, M. R. Weatherly, L. Wing, J. E. Morris, L. Sindel, M. Rosenberg, F. W. van Ginkel, J. R. Mcghee, D. Kelly, R. K. Lyrene, and E. J. Sorscher. A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis. Hum. Gene Ther. 12:751–761 (2001). doi:10.1089/104303401750148667.

    Article  Google Scholar 

  6. T. A. Rando. Non-viral gene therapy for Duchenne muscular dystrophy: progress and challenges. Biochim. Biophys. Acta, Mol. Basis Dis. 1772:263–271 (2007).

    Google Scholar 

  7. I. S. Blagbrough, E. Moya, and S. Taylor. Polyamines and polyamine amides from wasps and spiders. Biochem. Soc. Trans. 22:888–893 (1994).

    Google Scholar 

  8. I. S. Blagbrough, A. J. Geall, and S. A. David. Lipopolyamines incorporating the tetraamine spermine, bound to an alkyl chain, sequester bacterial lipopolysaccharide. Bioorg. Med. Chem. Letters. 10:1959–1962 (2000). doi:10.1016/S0960-894X(00)00380-2.

    Article  Google Scholar 

  9. J. G. Delcros, S. Tomasi, S. Carrington, B. Martin, J. Renault, I. S. Blagbrough, and P. Uriac. Effect of spermine conjugation on the cytotoxicity and cellular transport of acridine. J. Med. Chem. 45:5098–5111 (2002). doi:10.1021/jm020843w.

    Article  Google Scholar 

  10. I. S. Blagbrough, A. J. Geall, and A. P. Neal. Polyamines and novel polyamine conjugates interact with DNA in ways that can be exploited in non-viral gene therapy. Biochem. Soc. Trans. 31:397–406 (2003). doi:10.1042/BST0310397.

    Article  Google Scholar 

  11. J. P. Behr, B. Demeneix, J. P. Loeffler, and J. P. Mutul. Efficient gene-transfer into mammalian primary endocrine-cells with lipopolyamine-coated DNA. Proc. Natl. Acad. Sci. USA. 86:6982–6986 (1989). doi:10.1073/pnas.86.18.6982.

    Article  Google Scholar 

  12. O. A. A. Ahmed, N. Adjimatera, C. Pourzand, and I. S. Blagbrough. N 4,N 9-Dioleoyl spermine is a novel nonviral lipopolyamine vector for plasmid DNA formulation. Pharm. Res. 22:972–980 (2005). doi:10.1007/s11095-005-4592-1.

    Article  Google Scholar 

  13. N. Adjimatera, T. Kral, M. Hof, and I. S. Blagbrough. Lipopolyamine-mediated single nanoparticle formation of calf thymus DNA analyzed by fluorescence correlation spectroscopy. Pharm. Res. 23:1564–1573 (2006). doi:10.1007/s11095-006-0278-6.

    Article  Google Scholar 

  14. O. A. A. Ahmed, C. Pourzand, and I. S. Blagbrough. Varying the unsaturation in N 4,N 9-dioctadecanoyl spermines: Nonviral lipopolyamine vectors for more efficient plasmid DNA formulation. Pharm. Res. 23:31–40 (2006). doi:10.1007/s11095-005-8717-3.

    Article  Google Scholar 

  15. D. McLaggan, N. Adjimatera, K. Sepcic, M. Jaspars, D. J. MacEwan, I. S. Blagbrough, and R. H. Scott. Pore forming polyalkylpyridinium salts from marine sponges versus synthetic lipofection systems: distinct tools for intracellular delivery of cDNA and siRNA. BMC Biotechnol. 6:6 (2006). doi:10.1186/1472-6750-6-6.

    Article  Google Scholar 

  16. R. G. Crystal. Transfer of genes to humans: early lessons and hurdles to success. Science. 270:404–410 (1995). doi:10.1126/science.270.5235.404.

    Article  Google Scholar 

  17. P. Kreiss, B. Cameron, R. Rangara, P. Mailhe, O. Guerre-Charriol, M. Airiau, D. Scherman, J. Crouzet, and B. Pitard. Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res. 27:3792–3798 (1999). doi:10.1093/nar/27.19.3792.

    Article  Google Scholar 

  18. G. de Jong, A. Telenius, S. Vanderbyl, A. Meitz, and J. Drayer. Efficient in-vitro transfer of a 60-Mb mammalian artificial chromosome into murine and hamster cells using cationic lipids and dendrimers. Chromosome Res. 9:475–485 (2001). doi:10.1023/A:1011680529073.

    Article  Google Scholar 

  19. S. W. Dow, L. G. Fradkin, D. H. Liggitt, A. P. Willson, T. D. Heath, and T. A. Potter. Lipid-DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously. J. Immunol. 163:1552–1561 (1999).

    Google Scholar 

  20. M. Whitmore, S. Li, and L. Huang. LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth. Gene Ther. 6:1867–1875 (1999). doi:10.1038/sj.gt.3301026.

    Article  Google Scholar 

  21. M. M. Whitmore, S. Li, L. Falo, and L. Huang. Systemic administration of LPD prepared with CpG oligonucleotides inhibits the growth of established pulmonary metastases by stimulating innate and acquired antitumor immune responses. Cancer Immunol. Immunother. 50:503–514 (2001). doi:10.1007/s002620100227.

    Article  Google Scholar 

  22. A. Fire, S. Q. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391:806–811 (1998). doi:10.1038/35888.

    Article  Google Scholar 

  23. S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411:494–498 (2001). doi:10.1038/35078107.

    Article  Google Scholar 

  24. S. M. Elbashir, W. Lendeckel, and T. Tuschl. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development. 15:188–200 (2001). doi:10.1101/gad.862301.

    Article  Google Scholar 

  25. M. A. Matzke, and J. A. Birchler. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6:24–35 (2005). doi:10.1038/nrg1500.

    Article  Google Scholar 

  26. J. Heyes, L. Palmer, K. Bremner, and I. MacLachlan. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J. Controlled Release. 107:276–287 (2005). doi:10.1016/j.jconrel.2005.06.014.

    Article  Google Scholar 

  27. G. Ronsin, C. Perrin, P. Guedat, A. Kremer, P. Camilleri, and A. J. Kirby. Novel spermine-based cationic gemini surfactants for gene delivery. Chem. Commun. 21:2234–2235 (2001). doi:10.1039/b105936j.

    Article  Google Scholar 

  28. L. T. Weinstock, W. J. Rost, and C. C. Cheng. Synthesis of new polyamine derivatives for cancer chemotherapeutic studies. J. Pharm. Sci. 70:956–959 (1981). doi:10.1002/jps.2600700835.

    Article  Google Scholar 

  29. Y. Chu, M. Masoud, and G. Gebeyehu. Synthesis and activity of transfection reagents for transport of biologically active agents or substances into cells PCT Int. Appl. WO1999US26825 19991112 [WO0027795], 130 pp. (2000).

  30. R. M. Tyrrell, and M. Pidoux. Quantitative differences in host-cell reactivation of ultraviolet-damaged virus in human-skin fibroblasts and epidermal-keratinocytes cultured from the same foreskin biopsy. Cancer Res. 46:2665–2669 (1986).

    Google Scholar 

  31. J. L. Zhong, A. Yiakouvaki, P. Holley, R. M. Tyrrell, and C. Pourzand. Susceptibility of skin cells to UVA-induced necrotic cell death reflects the intracellular level of labile iron. J. Invest. Dermatol. 123:771–780 (2004). doi:10.1111/j.0022-202X.2004.23419.x.

    Article  Google Scholar 

  32. M. Gossen, and H. Bujard. Tight control of gene-expression in mammalian-cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA. 89:5547–5551 (1992). doi:10.1073/pnas.89.12.5547.

    Article  Google Scholar 

  33. E. Kvam, V. Hejmadi, S. Ryter, C. Pourzand, and R. M. Tyrrell. Heme oxygenase activity causes transient hypersensitivity to oxidative ultraviolet A radiation that depends on release of iron from heme. Free Radic. Biol. Med. 28:1191–1196 (2000). doi:10.1016/S0891-5849(00)00205-7.

    Article  Google Scholar 

  34. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65:55–63 (1983). doi:10.1016/0022-1759(83)90303-4.

    Article  Google Scholar 

  35. D. Fischer, T. Bieber, Y. X. Li, H. P. Elsasser, and T. Kissel. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: Effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16:1273–1279 (1999). doi:10.1023/A:1014861900478.

    Article  Google Scholar 

  36. A. L. C. Cardoso, S. Simoes, L. P. de Almeida, J. Pelisek, C. Culmsee, E. Wagner, and M. C. P. de Lima. siRNA delivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing. J. Gene Med. 9:170–183 (2007). doi:10.1002/jgm.1006.

    Article  Google Scholar 

  37. A. J. Geall, and I. S. Blagbrough. Rapid and sensitive ethidium bromide fluorescence quenching assay of polyamine conjugate–DNA interactions for the analysis of lipoplex formation in gene therapy. J. Pharm. Biomed. Anal. 22:849–859 (2000). doi:10.1016/S0731-7085(00)00250-8.

    Article  Google Scholar 

  38. P. L. Felgner, Y. Barenholz, J. P. Behr, S. H. Cheng, P. Cullis, L. Huang, J. A. Jessee, L. Seymour, F. Szoka, A. R. Thierry, E. Wagner, and G. Wu. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 8:511–512 (1997). doi:10.1089/hum.1997.8.5-511.

    Article  Google Scholar 

  39. R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32:e149 (2004). doi:10.1093/nar/gnh140.

    Article  Google Scholar 

  40. T. Tagami, J. M. Barichello, H. Kikuchi, T. Ishida, and H. Kiwada. The gene-silencing effect of siRNA in cationic lipoplexes is enhanced by incorporating pDNA in the complex. Int. J. Pharm. 333:62–69 (2007). doi:10.1016/j.ijpharm.2006.09.057.

    Article  Google Scholar 

  41. C. F. Hung, T. L. Hwang, C. C. Chang, and J. Y. Fang. Physicochemical characterization and gene transfection efficiency of lipid, emulsions with various co-emulsifiers. Int. J. Pharm. 289:197–208 (2005). doi:10.1016/j.ijpharm.2004.11.008.

    Article  Google Scholar 

  42. D. G. Anderson, A. Akinc, N. Hossain, and R. Langer. Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Mol. Ther. 11:426–434 (2005). doi:10.1016/j.ymthe.2004.11.015.

    Article  Google Scholar 

  43. X. Gao, and L. Huang. Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry. 35:1027–1036 (1996). doi:10.1021/bi952436a.

    Article  Google Scholar 

  44. S. C. De Smedt, J. Demeester, and W. E. Hennink. Cationic polymer based gene delivery systems. Pharm. Res. 17:113–126 (2000). doi:10.1023/A:1007548826495.

    Article  Google Scholar 

  45. J. Panyam, and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55:329–347 (2003). doi:10.1016/S0169-409X(02)00228-4.

    Article  Google Scholar 

  46. H. M. Ghonaim, S. Li, and I. S. Blagbrough. Very long chain N 4,N 9-diacyl spermines: non-viral lipopolyamine vectors for efficient plasmid DNA and siRNA delivery. Pharm. Res. 25: in press (2008).

Download references

Acknowledgements

We acknowledge the financial support of the Egyptian Government to H.M.G. (a fully funded studentship) and to M.K.S. (a studentship under the Channel Scheme). We are grateful to Prof R.M. Tyrrell for the FEK4 and HtTA cell lines, to Dr C. Pourzand for helpful discussions, and we acknowledge S. Li (all University of Bath) for the synthesis of the N 4,N 9-dimyristoleoyl analogue. We thank NanoSight Ltd (Salisbury, UK) for the NanoSight LM10 and Beckman Coulter (High Wycombe, UK) for the Delsa™Nano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian S. Blagbrough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltan, M.K., Ghonaim, H.M., El Sadek, M. et al. Design and Synthesis of N 4,N 9-Disubstituted Spermines for Non-viral siRNA Delivery – Structure-Activity Relationship Studies of siFection Efficiency Versus Toxicity. Pharm Res 26, 286–295 (2009). https://doi.org/10.1007/s11095-008-9731-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9731-z

KEY WORDS

Navigation