Skip to main content

Advertisement

Log in

Process optimization and photostability of silymarin nanostructured lipid carriers: effect on UV-irradiated rat skin and SK-MEL 2 cell line

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The objective of the present work was to formulate a novel stable delivery system which would not only overcome the solubility issue of silymarin, but also help to increase the therapeutic value by better permeation, anticancer action and reduced toxicity. This was envisaged through the recent developments in nanotechnology, combined with the activity of the phytoconstituent silymarin. A 23 full factorial design based on three independent variables was used for process optimization of nanostructured lipid carriers (NLC). Developed formulations were evaluated on the basis of particle size, morphology, in vitro drug release, photostability and cell line studies. Optimized silymarin-NLC was incorporated into carbopol gel and further assessed for rheological parameters. Stable behaviour in presence of light was proven by photostability testing of formulation. Permeability parameters were significantly higher in NLC as compared to marketed phytosome formulation. The NLC based gel described in this study showed faster onset, and prolonged activity up to 24 h and better action against edema as compared to marketed formulation. In case of anticancer activity of silymarin-NLC against SK-MEL 2 cell lines, silymarin-NLC proved to possess anticancer activity in a dose-dependent manner (10–80 μM) and induced apoptosis at 80 μM in SK-MEL 2 cancer cells. This work documents for the first time that silymarin can be formulated into nanostructured lipoidal carrier system for enhanced permeation, greater stability as well as anticancer activity for skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lacatusu I, Mitrea E, Badea N, Stan R, Oprea O, Meghea A. Lipid nanoparticles based on omega-3 fatty acids as effective carriers for lutein delivery. Preparation and in vitro characterization studies. J Funct Foods. 2013;5(3):1260–9.

    Article  CAS  Google Scholar 

  2. Kamble MS, Vaidya KK, Bhosale AV, Chaudhari PD. Solid lipid nanoparticles and nanostructured lipid carriers–an overview. Int J Pharma Chem Biol Sci. 2012;2(4):681–91.

    CAS  Google Scholar 

  3. Vitorino C, Almeida J, Gonçalves L, Almeida A, Sousa J, Pais A. Co-encapsulating nanostructured lipid carriers for transdermal application: from experimental design to the molecular detail. J Control Release. 2013;167(3):301–14.

    Article  CAS  PubMed  Google Scholar 

  4. Wissing S, Kayser O, Muller R. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–72.

    Article  CAS  PubMed  Google Scholar 

  5. Delgado D, Cruz R, Escobar-Chavez JJ, Ganem A. Preparation and characterization of triclosan nanoparticles intended to be used for treatment of acne. Eur J Pharm Biopharm. 2011;79(1):102–7.

    Article  Google Scholar 

  6. Majumder J, Deb J, Das MR, Jana SS, Dastidar P. Designing a simple organic salt-based supramolecular topical gel capable of displaying in vivo self-delivery application. Chem Commun. 2014;50(14):1671–4.

    Article  CAS  Google Scholar 

  7. Mei L, Zhang Y, Zheng Y, Tian G, Song C, Yang D, et al. A novel docetaxel-loaded poly (ε-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment. Nanoscale Res Lett. 2009;4(12):1530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fang J-Y, Fang C-L, Liu C-H, Su Y-H. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2008;70(2):633–40.

    Article  CAS  PubMed  Google Scholar 

  9. Sanad RA, AbdelMalak NS, Badawi AA. Formulation of a novel oxybenzone-loaded nanostructured lipid carriers (NLCs). AAPS PharmSciTech. 2010;11(4):1684–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Teeranachaideekul V, Souto EB, Junyaprasert VB, Muller RH. Cetyl palmitate-based NLC for topical delivery of coenzyme Q (10)-development, physicochemical characterization and in vitro release studies. Eur J Pharm Biopharm. 2007;67(1):141–8.

    Article  CAS  PubMed  Google Scholar 

  11. Dong Y, Feng S-S. Poly (D, L-lactide-co-glycolide)(PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. Int J Pharm. 2007;342(1):208–14.

    Article  CAS  PubMed  Google Scholar 

  12. W-H W, Lin B-Y, Kuo Y-H, Huang C-J. Triglycerides constituted of short and medium chain fatty acids and dicarboxylic acids in Momordicacharantia, as well as capric acid, inhibit PGE 2 production in RAW264. 7 macrophages. Food Chem. 2009;117(2):306–11.

    Article  Google Scholar 

  13. Zhuang C-Y, Li N, Wang M, Zhang X-N, Pan W-S, Peng J-J, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394(1):179–85.

    Article  CAS  PubMed  Google Scholar 

  14. Chaturvedi SP, Kumar V. Production techniques of lipid nanoparticles: a review. RJPBCS. 2008;3(3):525–41.

    Google Scholar 

  15. Soumya D. A glimpse on melanoma-risk factors and treatment. J Cancer Sci Ther. 2011;17(4):1948–56.

    Google Scholar 

  16. Arias JL, Clares B, Morales ME, Gallardo V, Ruiz MA. Lipid-based drug delivery systems for cancer treatment. Curr Drug Targets. 2011;12(8):1151–65.

    Article  CAS  PubMed  Google Scholar 

  17. Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer Nanotechnol: Methods Protocols. 2010;624:25–37.

    Article  CAS  Google Scholar 

  18. Krena V, Walterova D. Silybin and silymarin-new effects and applications. Biomed Papers. 2005;149(1):29–41.

    Article  Google Scholar 

  19. Spada G, Gavini E, Cossu M, Rassu G, Carta A, Giunchedi P. Evaluation of the effect of hydroxypropyl-β-cyclodextrin on topical administration of milk thistle extract. Carbohydr Polym. 2013;92(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  20. Toklu HZ, Tunalı-Akbay T, Erkanlı G, Yuksel M, Ercan F, Şener G. Silymarin, the antioxidant component of Silybum marianum, protects against burn-induced oxidative skin injury. Burns. 2007;33(7):908–16.

    Article  PubMed  Google Scholar 

  21. Katiyar SK, Korman NJ, Mukhtar H, Agarwal R. Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst. 1997;89(8):556–65.

    Article  CAS  PubMed  Google Scholar 

  22. Katiyar SK. UV-induced immune suppression and photocarcinogenesis: chemoprevention by dietary botanical agents. Cancer Lett. 2007;255(1):1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh RP, Agarwal R. Flavonoid antioxidant silymarin and skin cancer. Antioxid Redox Signal. 2002;4(4):655–63.

    Article  CAS  PubMed  Google Scholar 

  24. Munin A, Edwards-Levy F. Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics. 2011;3(4):793–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parveen R, Baboota S, Ali J, Ahuja A, Vasudev SS, Ahmad S. Oil based nanocarrier for improved oral delivery of silymarin: in vitro and in vivo studies. Int J Pharm. 2011;413(1):245–53.

    Article  CAS  PubMed  Google Scholar 

  26. Fraschini F, Demartini G, Esposti D. Pharmacology of silymarin. Clin Drug Investig. 2002;22(1):51–65.

    Article  CAS  Google Scholar 

  27. Javed S, Kohli K, Ali M. Reassessing bioavailability of silymarin. Altern Med Rev: J Clin Ther. 2011;16(3):239–49.

    Google Scholar 

  28. Rai R, Shanmuga SC, Srinivas C. Update on photoprotection. Indian J Dermatol. 2012;57(5):335.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fang Z, Bhandari B. Encapsulation of polyphenols; a review. Trends Food Technol. 2010;21(10):510–23.

    Article  CAS  Google Scholar 

  30. El-Sherbiny IM, Abdel-Mogib M, Dawidar A-AM, Elsayed A, Smyth HDC. Biodegradable pH-responsive alginate-poly (lactic-co-glycolic acid) nano/micro hydrogel matrices for oral delivery of silymarin. Carbohydr Polym. 2010;83(3):1345–54.

    Article  Google Scholar 

  31. Miroliaee AE, Esmaily H, Vaziri-Bami A, Baeeri M, Shahverdi AR, Abdollahi M. Amelioration of experimental colitis by a novel nanoselenium-silymarin mixture. Toxicol Mech Methods. 2011;21(3):200–8.

    Article  CAS  PubMed  Google Scholar 

  32. Khan PA, Thube R, Rab RA. Formulation development and evaluation of silymarin gel for psoriasis treatment. J Innov Pharm Biol Sci. 2014;1(1):21–6.

    Google Scholar 

  33. Severino P, Santana MHA, Souto EB. Optimizing SLN and NLC by 2 2 full factorial design: effect of homogenization technique. Mater Sci Eng C. 2012;32(6):1375–9.

    Article  CAS  Google Scholar 

  34. Teo BSX, Basri M, Zakaria MRS, Salleh AB, Rahman RN, Rahman MB. A potential tocopherol acetate loaded palm oil esters-in-water nanoemulsions for nanocosmeceuticals. J Nanobiotechnol. 2010;8(4):1–11.

    Google Scholar 

  35. Kumar R, Yasir M, Saraf SA, Gaur PK, Kumar Y, Singh AP. Glyceryl monostearate based nanoparticles of mefenamic acid: fabrication and in vitro characterization. Drug Invent Today. 2014;5(3):246–50.

    Article  Google Scholar 

  36. Chawla V, Saraf SA. Glyceryl behenate and its suitability for production of aceclofenac solid lipid nanoparticles. J Am Oil Chem Soc. 2011;88(1):119–26.

    Article  CAS  Google Scholar 

  37. Kamboj S, Saini V, Maggon N, Bala S, Jhawat V. Vesicular drug delivery systems: a novel approach for drug targeting. Int J Drug Deliv. 2013;5(2):121.

  38. Mohamad NE, Abu N, Rahman HS, Ky H, Ho WY, Lim KL, et al. Nanostructured lipid carrier improved in vivo anti-tumor and immunomodulatory effect of Zerumbone in 4T1 challenged mice. RSC Adv. 2015;5(28):22066–74.

    Article  CAS  Google Scholar 

  39. Shivhare UD, Jain KB, Mathur VB, Bhusari KP, Roy AA. Formulation development and evaluation of diclofenac sodium gel using water soluble polyacrylamide polymer. Dig J Nanomater Biostruct. 2009;4(2):285–90.

    Google Scholar 

  40. Patel D, Qasgupta S, Dey S, RojaRamani Y, Ray S, Mazumder B. Nanostructured lipid carriers (NLC)-based gel for topical delivery of aceclofenac: preparation, characterization and in vivo evaluation. Sci Pharm. 2012;80(3):749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao S, Yang X, Garamus VM, Handge UA, Berengere L, Zhao L, et al. Mixture of nonionic/ionic surfactants for the formulation of nanostructured lipid carriers: effects on physical properties. Langmuir. 2014;30(23):6920–8.

    Article  CAS  PubMed  Google Scholar 

  42. Tran TH, Ramasamy T, Truong DH, Choi H-G, Yong CS, Kim JO. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement. AAPS PharmSciTech. 2014;15(6):1509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Misal G, Dixit G, Gulkari V. Formulation and evaluation of herbal gel. Indian J Nat Prod Res. 2012;3(4):501–5.

    CAS  Google Scholar 

  44. Gokce EH, Korkmaz E, Dellera E, Sandri G, Bonferoni MC, Ozer O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomedicine. 2012;7(1):1841–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Agrawal Y, Petkar KC, Sawant KK. Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis. Int J Pharm. 2010;401(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  46. Ravani L, Esposito E, Bories C, Lievin-Le Moal V, Loiseau PM, Djabourov M, et al. Clotrimazole-loaded nanostructured lipid carrier hydrogels: thermal analysis and in vitro studies. Int J Pharm. 2013;454(2):695–702.

    Article  CAS  PubMed  Google Scholar 

  47. Dosul J, Rodrigues O, Santos IR, Fillmann G, Matthiensen A. Skin irritation and histopathologic alterations in rats exposed to lightstick contents, UV radiation and seawater. Ecotoxicol Environ Saf. 2009;72(7):2020–4.

    Article  Google Scholar 

  48. Majumder J, Yedoti P, Dastidar P. A supramolecular topical gel derived from a non-steroidal anti-inflammatory drug, fenoprofen, is capable of treating skin inflammation in mice. Org Biomol Chem. 2015;13(8):2300–9.

    Article  CAS  PubMed  Google Scholar 

  49. Ioele G, Cione E, Risoli A, Genchi G, Ragno G. Accelerated photostability study of tretinoin and isotretinoin in liposome formulations. Int J Pharm. 2005;293(1):251–60.

    Article  CAS  PubMed  Google Scholar 

  50. Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 2008;346(1):124–32.

    Article  CAS  PubMed  Google Scholar 

  51. Pokharkar VB, Shekhawat PB, Dhapte VV, Mandpe LP. Development and optimization of eugenol loaded nanostructured lipid carriers for periodontal delivery Int J Pharm Pharmsci. 2011;3(4):138–143.

  52. Wu N, Wang L-S, Tan DC-W, Moochhala SM, Yang Y-Y. Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights. J Control Release. 2005;102(3):569–81.

    Article  CAS  PubMed  Google Scholar 

  53. Anthony FA, Dowdy JC, Costlow ME. Attenuation of ultraviolet radiation-induced edema and erythema with topical calmodulin and protein kinase C inhibitors. Photodermatol Photoimmunol Photomed. 1994;10(6):227–34.

    CAS  PubMed  Google Scholar 

  54. Xia WJ, Onyuksel H. Mechanistic studies on surfactant-induced membrane permeability enhancement. Pharm Res. 2000;17(5):612–8.

    Article  CAS  PubMed  Google Scholar 

  55. Moribe K, Limwikrant W, Higashi K, Yamamoto K. Drug nanoparticle formulation using ascorbic acid derivatives. J Drug Deliv. 2011;2011(2011):9.

    Google Scholar 

  56. Learn DB, Beasley DG, Giddens LD, Beard J, Stanfield JW, Roberts LK. Minimum doses of ultraviolet radiation required to induce murine skin edema and immunosuppression are different and depend on the ultraviolet emission spectrum of the source. Photochem Photobiol. 1995;62(6):1066–75.

    Article  CAS  PubMed  Google Scholar 

  57. Mitchell DL, Byrom M, Chiarello S, Lowery MG. Effects of chronic exposure to ultraviolet B radiation on DNA repair in the dermis and epidermis of the hairless mouse. J Investig Dermatol. 2001;116(2):209–15.

    Article  CAS  PubMed  Google Scholar 

  58. McGlade JP, Gorman S, Lenzo JC, Tan JW, Watanabe T, Finlay-Jones JJ, et al. Effect of both ultraviolet B irradiation and histamine receptor function on allergic responses to an inhaled antigen. J Immunol. 2007;178(5):2794–802.

    Article  CAS  PubMed  Google Scholar 

  59. Inomata S, Matsunaga Y, Amano S, Takada K, Kobayashi K, Tsunenaga M, et al. Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse. J Investig Dermatol. 2003;120(1):128–34.

    Article  CAS  PubMed  Google Scholar 

  60. Kovacevic A, Savic S, Vuleta G, Muller RH, Keck CM. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. Int J Pharm. 2011;406(1):163–72.

    Article  CAS  PubMed  Google Scholar 

  61. Uprit S, Sahu RK, Roy A, Pare A. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm J. 2013;21(4):379–85.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Joshi M, Patravale V. Formulation and evaluation of nanostructured lipid carrier (NLC) based gel of valdecoxib. Drug Dev Ind Pharm. 2006;32(8):911–8.

    Article  CAS  PubMed  Google Scholar 

  63. Galindo-Rodriguez S, Allamann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res. 2004;21(8):1428–39.

    Article  CAS  PubMed  Google Scholar 

  64. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 1). Trop J Pharm Res. 2013;12(2):255–64.

    Google Scholar 

  65. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 2). Trop J Pharm Res. 2013;12(2):265–73.

    Google Scholar 

  66. Tantra R, Schulze P, Quincey P. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology. 2010;8(3):279–85.

    Article  CAS  Google Scholar 

  67. Basson DK, Berres S, Bürger R. On models of polydisperse sedimentation with particle-size-specific hindered-settling factors. Appl Math Model. 2009;33(4):1815–35.

    Article  Google Scholar 

  68. Katiyar SK. Silymarin and skin cancer prevention: anti-inflammatory, antioxidant and immunomodulatory effects (review). Int J Oncol. 2005;26(1):169–76.

    CAS  PubMed  Google Scholar 

  69. Lahiri-Chatterjee M, Katiyar SK, Mohan RR, Agarwal R. A flavonoid antioxidant, silymarin, affords exceptionally high protection against tumor promotion in the SENCAR mouse skin tumorigenesis model. Cancer Res. 1999;59(3):622–32.

    CAS  PubMed  Google Scholar 

  70. Svobodova A, Zdarilova A, Maliskova J, Mikulkova H, Walterova D, Vostalova J. Attenuation of UVA-induced damage to human keratinocytes by silymarin. J Dermatol Sci. 2007;46(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  71. Kuete V, Voukeng IK, Tsobou R, Mbaveng AT, Wiench B, Beng VP, et al. Cytotoxicity of Elaoephorbia drupifera and other Cameroonian medicinal plants against drug sensitive and multidrug resistant cancer cells. BMC Complement Altern Med. 2013;13(1):1.

    Article  Google Scholar 

  72. Akindele AJ, Wani ZA, Sharma S, Mahajan G, Satti NK, Adeyemi OO, et al. In vitro and in vivo anticancer activity of root extracts of Sansevieria liberica Gerome and Labroy (Agavaceae). Evid Based Complement Alternat Med. 2015;2015.

Download references

Acknowledgment

The authors wish to acknowledge Alchem Int. Pvt. Ltd., India and Gattefosse, India for the gift samples of excipients and drug ACTREC, Mumbai, India for some facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhini A. Saraf.

Ethics declarations

The protocol for the experimentation, transportation and care of the animals used in study was approved by Institutional Animal Ethical Committee (BBDNIIT/IAEC/057/2014) and the handling was done as per CPCSEA guidelines.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Singh, M., Kanoujia, J. et al. Process optimization and photostability of silymarin nanostructured lipid carriers: effect on UV-irradiated rat skin and SK-MEL 2 cell line. Drug Deliv. and Transl. Res. 6, 597–609 (2016). https://doi.org/10.1007/s13346-016-0317-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0317-8

Keywords

Navigation