Skip to main content

Advertisement

Log in

Very Long Chain N 4,N 9 -Diacyl Spermines: Non-Viral Lipopolyamine Vectors for Efficient Plasmid DNA and siRNA Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study the effect of increasing the chain length over C-18 and varying the oxidation level in synthesized N 4,N 9-diacyl spermines on DNA and siRNA formulation, and then to compare their transfection efficiency in cell lines

Methods

The five novel very long chain N 4,N 9-diacyl polyamines: N 4,N 9-[diarachidoyl, diarachidonoyl, dieicosenoyl, dierucoyl and dinervonoyl]-1,12-diamino-4,9-diazadodecane were synthesized. The abilities of these novel compounds to condense DNA and to form nanoparticles were studied using ethidium bromide fluorescence quenching and nanoparticle characterization techniques. Transfection efficiency was studied in FEK4 primary skin cells and in an immortalized cancer cell line (HtTA), and compared with the non-liposomal transfection formulation Lipogen, N 4,N 9-dioleoyl-1,12-diamino-4,9-diazadodecane. Also, the abilities of these compounds to condense siRNA and to form nanoparticles were studied using a RiboGreen intercalation assay and their abilities to deliver siRNA into cells were studied in FEK4 and HtTA cells using fluorescein-labelled Label IT® RNAi Delivery Control, a sequenced 21-mer from Mirus.

Results

We show efficient pEGFP and siRNA formulation and delivery to primary skin and cancer cell lines.

Conclusions

Adding two C20 or C22 chains, both mono-cis-unsaturated, N 4,N 9-dieicosenoyl spermine and N 4,N 9-dierucoyl spermine, gave efficient siRNA delivery vectors, even in the presence of serum, comparable to TransIT-TKO and with excellent cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

EGFP:

enhanced green fluorescent protein

EMEM:

Earle’s Minimal Essential Medium

EthBr:

ethidium bromide

FCS:

foetal calf serum

HRMS:

high-resolution mass spectrometry

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NVGT:

non-viral gene therapy

pEGFP:

plasmid encoding for enhanced green fluorescent protein

References

  1. W. J. Li, and F. C. Szoka. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 24:438–449 (2007) doi:10.1007/s11095-006-9180-5.

    Article  PubMed  CAS  Google Scholar 

  2. O. A. A. Ahmed, N. Adjimatera, C. Pourzand, and I. S. Blagbrough. N 4,N 9-Dioleoyl spermine is a novel nonviral lipopolyamine vector for plasmid DNA formulation. Pharm. Res. 22:972–980 (2005) doi:10.1007/s11095-005-4592-1.

    Article  PubMed  CAS  Google Scholar 

  3. O. A. A. Ahmed, C. Pourzand, and I. S. Blagbrough. Varying the unsaturation in N 4,N 9-dioctadecanoyl spermines: Nonviral lipopolyamine vectors for more efficient plasmid DNA formulation. Pharm. Res. 23:31–40 (2006) doi:10.1007/s11095-005-8717-3.

    Article  PubMed  CAS  Google Scholar 

  4. I. S. Zuhorn, J. B. F. N. Engberts, and D. Hoekstra. Gene delivery by cationic lipid vectors: overcoming cellular barriers. Eur. Biophys. J. Biophys. 36:349–362 (2007) doi:10.1007/s00249-006-0092-4.

    Article  CAS  Google Scholar 

  5. L. Gaedtke, J. Pelisek, K. S. Lipinski, C. J. Wrighton, and E. Wagner. Transcriptionally targeted nonviral gene transfer using a β-catenin/TCF-dependent promoter in a series of different human low passage colon cancer cells. Mol. Pharm. 4:129–139 (2007) doi:10.1021/mp0600586.

    Article  PubMed  CAS  Google Scholar 

  6. S. J. Ryhanen, V. M. J. Sally, M. J. Parry, P. Luciani, G. Mancini, J. M. I. Alakoskela, and P. K. J. Kinnunen. Counterion-controlled transition of a cationic gemini from submicroscopic to giant vesicles. J. Am. Chem. Soc. 128:8659–8663 (2006) doi:10.1021/ja060382u.

    Article  PubMed  CAS  Google Scholar 

  7. F. Sansone, M. Dudic, G. Donofrio, C. Rivetti, L. Baldini, A. Casnati, S. Cellai, and R. Ungaro. DNA condensation and cell transfection properties of guanidinium calixarenes: Dependence on macrocycle lipophilicity, size, and conformation. J. Am. Chem. Soc. 128:14528–14536 (2006) doi:10.1021/ja0634425.

    Article  PubMed  CAS  Google Scholar 

  8. H. Y. Li, and J. Birchall. Chitosan-modified dry powder formulations for pulmonary gene delivery. Pharm. Res. 23:941–950 (2006) doi:10.1007/s11095-006-0027-x.

    Article  PubMed  CAS  Google Scholar 

  9. J. P. Behr. Gene-transfer with synthetic cationic amphiphiles—prospects for gene-therapy. Bioconjug. Chem. 5:382–389 (1994) doi:10.1021/bc00029a002.

    Article  PubMed  CAS  Google Scholar 

  10. S. D. Li, and L. Huang. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther. 13:1313–1319 (2006) doi:10.1038/sj.gt.3302838.

    Article  PubMed  CAS  Google Scholar 

  11. D. Hoekstra, J. Rejman, L. Wasungu, F. Shi, and I. Zuhorn. Gene delivery by cationic lipids: in and out of an endosome. Biochem. Soc. Trans. 35:68–71 (2007) doi:10.1042/BST0350068.

    Article  PubMed  CAS  Google Scholar 

  12. G. M. Puddu, E. Cravero, E. Ferrari, A. Muscari, and P. Puddu. Gene-based therapy for hypertension do preclinical data suggest a promising future?. Cardiology. 108:40–47 (2007) doi:10.1159/000095688.

    Article  PubMed  CAS  Google Scholar 

  13. M. A. Behlke. Progress towards in vivo use of siRNAs. Mol. Ther. 13:644–670 (2006) doi:10.1016/j.ymthe.2006.01.001.

    Article  PubMed  CAS  Google Scholar 

  14. A. Doody, and D. Putnam. RNA-interference effectors and their delivery. Crit. Rev. Ther. Drug Carrier Syst. 23:137–164 (2006).

    PubMed  CAS  Google Scholar 

  15. Y. Ikeda, and K. Taira. Ligand-targeted delivery of therapeutic siRNA. Pharm. Res. 23:1631–1640 (2006) doi:10.1007/s11095-006-9001-x.

    Article  PubMed  CAS  Google Scholar 

  16. C. X. Li, A. Parker, E. Menocal, S. L. Xiang, L. Borodyansky, and J. H. Fruehauf. Delivery of RNA interference. Cell Cycle. 5:2103–2109 (2006).

    PubMed  CAS  Google Scholar 

  17. Z. Racz, and P. Hamar. Can siRNA technology provide the tools for gene therapy of the future?. Curr. Med. Chem. 13:2299–2307 (2006) doi:10.2174/092986706777935186.

    Article  PubMed  CAS  Google Scholar 

  18. K. A. Howard, and J. Kjems. Polycation-based nanoparticle delivery for improved RNA interference therapeutics. Expert Opin. Biol. Ther. 7:1811–1822 (2007) doi:10.1517/14712598.7.12.1811.

    Article  PubMed  CAS  Google Scholar 

  19. H. Takahashi, D. Letourneur, and D. W. Grainger. Delivery of large biopharmaceuticals from cardiovascular stents: A review. Biomacromolecules. 8:3281–3293 (2007) doi:10.1021/bm700540p.

    Article  PubMed  CAS  Google Scholar 

  20. S. B. Zhang, B. Zhao, H. M. Jiang, B. Wang, and B. C. Ma. Cationic lipids and polymers mediated vectors for delivery of siRNA. J. Control. Release. 123:1–10 (2007) doi:10.1016/j.jconrel.2007.07.016.

    Article  PubMed  CAS  Google Scholar 

  21. A. R. De Fougerolles. Delivery vehicles for small interfering RNA in vivo. Hum. Gene Ther. 19:125–132 (2008) doi:10.1089/hum.2008.928.

    Article  PubMed  CAS  Google Scholar 

  22. K. F. Pirollo, and E. H. Chang. Targeted delivery of small interfering RNA: Approaching effective cancer therapies. Cancer Res. 68:1247–1250 (2008) doi:10.1158/0008-5472.CAN-07–5810.

    Article  PubMed  CAS  Google Scholar 

  23. M. Cristofanilli, A. Iacoangeli, I. A. Muslimov, and H. Tiedge. Neuronal BC1 RNA: Microtubule-dependent dendritic delivery. J. Mol. Biol. 356:1118–1123 (2006) doi:10.1016/j.jmb.2005.11.090.

    Article  PubMed  CAS  Google Scholar 

  24. V. Russ, and E. Wagner. Cell and tissue targeting of nucleic acids for cancer gene therapy. Pharm. Res. 24:1047–1057 (2007) doi:10.1007/s11095-006-9233-9.

    Article  PubMed  CAS  Google Scholar 

  25. K. Morimoto, M. Kondo, K. Kawahara, H. Ushijima, Y. Tomino, M. Miyajima, and J. Kimura. Advances in targeting drug delivery to glomerular mesangial cells by long circulating cationic liposomes for the treatment of glomerulonephritis. Pharm. Res. 24:946–954 (2007) doi:10.1007/s11095-006-9213-0.

    Article  PubMed  CAS  Google Scholar 

  26. M. Hayes, D. Drummond, K. Hong, W. Zheng, V. Khorosheva, J. Cohen, C. Noble, J. Park, J. Marks, C. Benz, and D. Kirpotin. Increased target specificity of anti-HER2 genospheres by modification of surface charge and degree of PEGylation. Mol. Pharm. 3:726–736 (2006) doi:10.1021/mp060040v.

    Article  PubMed  CAS  Google Scholar 

  27. P. E. Kish, Y. Tsume, P. Kijek, T. M. Lanigan, J. M. Hilfinger, and B. J. Roessler. Bile acid-oligopeptide conjugates interact with DNA and facilitate transfection. Mol. Pharm. 4:95–103 (2007) doi:10.1021/mp060025q.

    Article  PubMed  CAS  Google Scholar 

  28. M. Walsh, M. Tangney, M. O’Neill, J. Larkin, D. Soden, S. McKenna, R. Darcy, G. O’Sullivan, and C. O’Driscoll. Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: Implications for cancer gene therapy. Mol. Pharm. 3:644–653 (2006) doi:10.1021/mp0600034.

    Article  PubMed  CAS  Google Scholar 

  29. J. Y. Zhou, J. W. Yockman, S. W. Kim, and S. E. Kern. Intracellular kinetics of non-viral gene delivery using polyethylenimine carriers. Pharm. Res. 24:1079–1087 (2007) doi:10.1007/s11095-006-9229-5.

    Article  PubMed  CAS  Google Scholar 

  30. R. M. Schiffelers, M. C. Woodle, and P. Scaria. Pharmaceutical prospects for RNA interference. Pharm. Res. 21:1–7 (2004) doi:10.1023/B:PHAM.0000012145.49054.6c.

    Article  PubMed  CAS  Google Scholar 

  31. A. J. Geall, and I. S. Blagbrough. Rapid and sensitive ethidium bromide fluorescence quenching assay of polyamine conjugate-DNA interactions for the analysis of lipoplex formation in gene therapy. J. Pharm. Biomed. Anal. 22:849–859 (2000) doi:10.1016/S0731-7085(00)00250-8.

    Article  PubMed  CAS  Google Scholar 

  32. J. P. Behr, B. Demeneix, J. P. Loeffler, and J. P. Mutul. Efficient gene-transfer into mammalian primary endocrine-cells with lipopolyamine-coated DNA. Proc. Natl. Acad. Sci. U. S. A. 86:6982–6986 (1989) doi:10.1073/pnas.86.18.6982.

    Article  PubMed  CAS  Google Scholar 

  33. J. S. Remy, C. Sirlin, P. Vierling, and J. P. Behr. Gene-transfer with a series of lipophilic DNA-binding molecules. Bioconjug. Chem. 5:647–654 (1994) doi:10.1021/bc00030a021.

    Article  PubMed  CAS  Google Scholar 

  34. H. W. Moser, G. V. Raymond, S. E. Lu, L. R. Muenz, A. B. Moser, J. H. Xu, R. O. Jones, D. J. Loes, E. R. Melhem, P. Dubey, L. Bezman, N. H. Brereton, and A. Odone. Follow-up of 89 asymptomatic patients with adrenoleukodystrophy treated with Lorenzo’s oil. Arch. Neurol. 62:1073–1080 (2005) doi:10.1001/archneur.62.7.1073.

    Article  PubMed  Google Scholar 

  35. P. L. Felgner, Y. Barenholz, J. P. Behr, S. H. Cheng, P. Cullis, L. Huang, J. A. Jessee, L. Seymour, F. Szoka, A. R. Thierry, E. Wagner, and G. Wu. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 8:511–512 (1997) doi:10.1089/hum.1997.8.5–511.

    Article  PubMed  CAS  Google Scholar 

  36. G. Ronsin, C. Perrin, P. Guedat, A. Kremer, P. Camilleri, and A. J. Kirby. Novel spermine-based cationic gemini surfactants for gene delivery. Chem. Commun. 2001:2234–2235 (2001) doi:10.1039/b105936j.

    Article  CAS  Google Scholar 

  37. R. M. Tyrrell, and M. Pidoux. Quantitative differences in host-cell reactivation of ultraviolet-damaged virus in human-skin fibroblasts and epidermal-keratinocytes cultured from the same foreskin biopsy. Cancer Res. 46:2665–2669 (1986).

    PubMed  CAS  Google Scholar 

  38. M. Gossen, and H. Bujard. Tight control of gene-expression in mammalian-cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U. S. A. 89:5547–5551 (1992) doi:10.1073/pnas.89.12.5547.

    Article  PubMed  CAS  Google Scholar 

  39. D. Fischer, T. Bieber, Y. X. Li, H. P. Elsasser, and T. Kissel. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: Effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16:1273–1279 (1999) doi:10.1023/A:1014861900478.

    Article  PubMed  CAS  Google Scholar 

  40. M. C. O’Sullivan, and D. M. Dalrymple. A one-step procedure for the selective trifluoroacetylation of primary amino-groups of polyamines. Tetrahedron Lett. 36:3451–3452 (1995) doi:10.1016/0040-4039(95)00630-U.

    Article  CAS  Google Scholar 

  41. D. Xu, K. Prasad, O. Repic, and T. J. Blacklock. Ethyl trifluoroacetate - a powerful reagent for differentiating amino-groups. Tetrahedron Lett. 36:7357–7360 (1995) doi:10.1016/0040-4039(95)01655-4.

    Article  CAS  Google Scholar 

  42. A. J. Geall, and I. S. Blagbrough. Homologation of polyamines in the rapid synthesis of lipospermine conjugates and related lipoplexes. Tetrahedron. 56:2449–2460 (2000) doi:10.1016/S0040-4020(99)01082-0.

    Article  CAS  Google Scholar 

  43. R. J. Bergeron, and J. S. McManis. Total synthesis of (±)-15-deoxyspergualin. J. Org. Chem. 52:1700–1703 (1987) doi:10.1021/jo00385a010.

    Article  CAS  Google Scholar 

  44. S. A. Cryan, A. Holohan, R. Donohue, R. Darcy, and C. M. O’Driscoll. Cell transfection with polycationic cyclodextrin vectors. Eur. J. Pharm. Sci. 21:625–633 (2004) doi:10.1016/j.ejps.2004.01.001.

    Article  PubMed  CAS  Google Scholar 

  45. J. Sen, and A. Chaudhuri. Design, syntheses, and transfection biology of novel non- cholesterol-based guanidinylated cationic lipids. J. Med. Chem. 48:812–820 (2005) doi:10.1021/jm049417w.

    Article  PubMed  CAS  Google Scholar 

  46. H. S. Yoo, J. E. Lee, H. Chung, I. C. Kwon, and S. Y. Jeong. Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J. Control. Release. 103:235–243 (2005) doi:10.1016/j.jconrel.2004.11.033.

    Article  PubMed  CAS  Google Scholar 

  47. V. A. Bloomfield. DNA condensation by multivalent cations. Biopolymers. 44:269–282 (1997) doi:10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T.

    Article  PubMed  CAS  Google Scholar 

  48. C. F. Hung, T. L. Hwang, C. C. Chang, and J. Y. Fang. Physicochemical characterization and gene transfection efficiency of lipid, emulsions with various co-emulsifiers. Int. J. Pharm. 289:197–208 (2005) doi:10.1016/j.ijpharm.2004.11.008.

    Article  PubMed  CAS  Google Scholar 

  49. D. G. Anderson, A. Akinc, N. Hossain, and R. Langer. Structure/property studies of polymeric gene delivery using a library of poly(β-amino esters). Mol. Ther. 11:426–434 (2005) doi:10.1016/j.ymthe.2004.11.015.

    Article  PubMed  CAS  Google Scholar 

  50. X. Gao, and L. Huang. Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry. 35:1027–1036 (1996) doi:10.1021/bi952436a.

    Article  PubMed  CAS  Google Scholar 

  51. S. C. De Smedt, J. Demeester, and W. E. Hennink. Cationic polymer based gene delivery systems. Pharm. Res. 17:113–126 (2000) doi:10.1023/A:1007548826495.

    Article  PubMed  Google Scholar 

  52. J. Panyam, and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55:329–347 (2003) doi:10.1016/S0169-409X(02)00228-4.

    Article  PubMed  CAS  Google Scholar 

  53. J. H. Felgner, R. Kumar, C. N. Sridhar, C. J. Wheeler, Y. J. Tsai, R. Border, P. Ramsey, M. Martin, and P. L. Felgner. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269:2550–2561 (1994).

    PubMed  CAS  Google Scholar 

  54. I. S. Blagbrough, D. Al-Hadithi, and A. J. Geall. Cheno-, urso- and deoxycholic acid spermine conjugates: Relative binding affinities for calf thymus DNA. Tetrahedron. 56:3439–3447 (2000) doi:10.1016/S0040-4020(00)00265-9.

    Article  CAS  Google Scholar 

  55. M. Ruponen, P. Honkakoski, M. Tammi, and A. Urtti. Cell-surface glycosaminoglycans inhibit cation-mediated gene transfer. J. Gene Med. 6:405–414 (2004) doi:10.1002/jgm.522.

    Article  PubMed  CAS  Google Scholar 

  56. C. M. Wiethoff, J. G. Koe, G. S. Koe, and C. R. Middaugh. Compositional effects of cationic lipid/DNA delivery systems on transgene expression in cell culture. J. Pharm. Sci. 93:108–123 (2004) doi:10.1002/jps.10519.

    Article  PubMed  CAS  Google Scholar 

  57. A. Kichler, A. J. Mason, and B. Bechinger. Cationic amphipathic histidine-rich peptides for gene delivery. Biochim. Biophys. Acta Biomembr. 1758:301–307 (2006) doi:10.1016/j.bbamem.2006.02.005.

    Article  CAS  Google Scholar 

  58. G. T. Hess, W. H. Humphries, N. C. Fay, and C. K. Payne. Cellular binding, motion, and internalization of synthetic gene delivery polymers. Biochim. Biophys. Acta. 1773:1583–1588 (2007) doi:10.1016/j.bbamcr.2007.07.009.

    Article  PubMed  CAS  Google Scholar 

  59. F. D. Nascimento, M. A. F. Hayashi, A. Kerkis, V. Oliveira, E. B. Oliveira, G. Radis-Baptista, H. B. Nader, T. Yamane, I. L. dos Santos Tersariol, and I. Kerkis. Crotamine mediates gene delivery into cells through the binding to heparan sulfate proteoglycans. J. Biol. Chem. 282:21349–21360 (2007) doi:10.1074/jbc.M604876200.

    Article  PubMed  CAS  Google Scholar 

  60. A. J. Geall, M. A. W. Eaton, T. Baker, C. Catterall, and I. S. Blagbrough. The regiochemical distribution of positive charges along cholesterol polyamine carbamates plays significant roles in modulating DNA binding affinity and lipofection. FEBS Lett. 459:337–342 (1999) doi:10.1016/S0014-5793(99)01262-4.

    Article  PubMed  CAS  Google Scholar 

  61. I. S. Blagbrough, A. J. Geall, and A. P. Neal. Polyamines and novel polyamine conjugates interact with DNA in ways that can be exploited in non-viral gene therapy. Biochem. Soc. Trans. 31:397–406 (2003) doi:10.1042/BST0310397.

    Article  PubMed  CAS  Google Scholar 

  62. N. Adjimatera, T. Kral, M. Hof, and I. S. Blagbrough. Lipopolyamine-mediated single nanoparticle formation of calf thymus DNA analyzed by fluorescence correlation spectroscopy. Pharm. Res. 23:1564–1573 (2006) doi:10.1007/s11095-006-0278-6.

    Article  PubMed  CAS  Google Scholar 

  63. C. McGregor, C. Perrin, M. Monck, P. Camilleri, and A. J. Kirby. Rational approaches to the design of cationic gemini surfactants for gene delivery. J. Am. Chem. Soc. 123:6215–6220 (2001) doi:10.1021/ja005681c.

    Article  PubMed  CAS  Google Scholar 

  64. G. Byk, C. Dubertret, V. Escriou, M. Frederic, G. Jaslin, R. Rangara, B. Pitard, J. Crouzet, P. Wils, B. Schwartz, and D. Scherman. Synthesis, activity, and structure-activity relationship studies of novel cationic lipids for DNA transfer. J. Med. Chem. 41:224–235 (1998) doi:10.1021/jm9704964.

    Article  Google Scholar 

  65. J. K. Wang, X. Guo, Y. H. Xu, L. Barron, and F. C. Szoka. Synthesis and characterization of long chain alkyl acyl carnitine esters. Potentially biodegradable cationic lipids for use in gene delivery. J. Med. Chem. 41:2207–2215 (1998) doi:10.1021/jm950802i.

    Article  PubMed  CAS  Google Scholar 

  66. J. A. Heyes, D. Niculescu-Duvaz, R. G. Cooper, and C. J. Springer. Synthesis of novel cationic lipids: Effect of structural modification on the efficiency of gene transfer. J. Med. Chem. 45:99–114 (2002) doi:10.1021/jm010918g.

    Article  PubMed  CAS  Google Scholar 

  67. L. H. Lindner, R. Brock, D. Arndt-Jovin, and H. Eibl. Structural variation of cationic lipids: Minimum requirement for improved oligonucleotide delivery into cells. J. Control. Release. 110:444–456 (2006) doi:10.1016/j.jconrel.2005.10.009.

    Article  PubMed  CAS  Google Scholar 

  68. E. G. Saravolac, O. Ludkovski, R. Skirrow, M. Ossanlou, Y. P. Zhang, C. Giesbrecht, J. Thompson, S. Thomas, H. Stark, P. R. Cullis, and P. Scherrer. Encapsulation of plasmid DNA in stabilized plasmid-lipid particles composed of different cationic lipid concentration for optimal transfection activity. J. Drug Target. 7:423–437 (2000).

    Article  PubMed  CAS  Google Scholar 

  69. Y. P. Zhang, L. Sekirov, E. G. Saravolac, J. J. Wheeler, P. Tardi, K. Clow, E. Leng, R. Sun, P. R. Cullis, and P. Scherrer. Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties. Gene Ther. 6:1438–1447 (1999) doi:10.1038/sj.gt.3300965.

    Article  PubMed  CAS  Google Scholar 

  70. K. W. C. Mok, A. M. I. Lam, and P. R. Cullis. Stabilized plasmid-lipid particles: factors influencing plasmid entrapment and transfection properties. Biochim. Biophys. Acta Biomembr. 1419:137–150 (1999) doi:10.1016/S0005-2736(99)00059-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of an Egyptian Government studentship to H.M.G. We are grateful to Prof R.M. Tyrrell for the FEK4 and HtTA cell lines and to Dr C. Pourzand (both University of Bath) for helpful advice in cell biology. We thank NanoSight Ltd (Salisbury, UK) for the NanoSight LM10 and Beckman Coulter (High Wycombe, UK) for the Delsa™Nano. We are grateful to M.K. Bates (Mirus Bio Technical Support Team) for the siRNA sequence data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian S. Blagbrough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghonaim, H.M., Li, S. & Blagbrough, I.S. Very Long Chain N 4,N 9 -Diacyl Spermines: Non-Viral Lipopolyamine Vectors for Efficient Plasmid DNA and siRNA Delivery . Pharm Res 26, 19–31 (2009). https://doi.org/10.1007/s11095-008-9705-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9705-1

KEY WORDS

Navigation