Skip to main content
Log in

Miniaturized Rotating Disk Intrinsic Dissolution Rate Measurement: Effects of Buffer Capacity in Comparisons to Traditional Wood’s Apparatus

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective was to investigate the feasibility of using a miniaturized disk intrinsic dissolution rate (IDR) apparatus to determine the Biopharmaceutics Classification System (BCS) solubility class, and to develop an approach where IDR measurements performed in media of different buffer capacity could be compared.

Methods

The disk IDR values of 14 model drugs were determined at 37°C in US Pharmacopeia buffers at pH 1.2, 4.5, and 6.8. As little as 5 mg of drug were compressed in a die, with surface area of 0.071 cm2, with the die assembly rotated at 100 rpm in 10 mL media. Drug concentration was measured by an in situ fiber optic ultraviolet method. The solubilities and pKas were determined, and used to simulate dissolution profiles with a convective-diffusion-with-chemical-reaction model.

Results

The disk IDR values spanned six orders of magnitude (0.00014 to 114 mg min−1 cm−2). The comparison of the miniaturized disk IDR values to published results using traditional dissolution bath apparatus indicated r 2 = 0.99.

Conclusions

The results demonstrate that using 100-fold less drug does not sacrifice the quality of the measurement, and lends support to an earlier study Yu et al. (Int. J. Pharm. 270:221–227, 2004) that the disk IDR measurement may possibly serve as a surrogate for the BCS solubility classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guidance for Industry. Waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a Biopharmaceutics Classification System. FDA, Washington, D.C., 2000, August.

    Google Scholar 

  2. G. L. Amidon, H. Lennernäs, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413–420 (1995), doi:10.1023/A:1016212804288.

    Article  PubMed  CAS  Google Scholar 

  3. J. B. Dressman, R. R. Berardi, T. L. Dermentzoglou, S. P. Russell, J. L. Schmaltz, J. L. Barnett, and K. M. Jarvenpaa. Upper gastrointestinal (GI) pH in young healthy men and women. Pharm. Res. 7:756–761 (1990), doi:10.1023/A:1015827908309.

    Article  PubMed  CAS  Google Scholar 

  4. S. D. Mithani, V. Bakatselou, C. N. TenHoor, and J. B. Dressman. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm. Res. 13:163–167 (1996), doi:10.1023/A:1016062224568.

    Article  PubMed  CAS  Google Scholar 

  5. E. S. Kostewicz, M. Wunderlich, U. Brauns, R. Becker, T. Bock, and J. B. Dressman. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J. Pharm. Pharmacol. 56:43–51 (2004), doi:10.1211/0022357022511.

    Article  PubMed  CAS  Google Scholar 

  6. J. B. Dressman, G. L. Amidon, C. Reppas, and V. P. Shah. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm. Res. 15:11–22 (1998), doi:10.1023/A:1011984216775.

    Article  PubMed  CAS  Google Scholar 

  7. J. H. Wood, J. E. Syarto, and H. Letterman. Improved holder for disk intrinsic dissolution rate studies. J. Pharm. Sci. 54:1068 (1965), doi:10.1002/jps.2600540730.

    Article  PubMed  CAS  Google Scholar 

  8. A. S. Noyes, and W. R. Whitney. The rate of solution of solid substances in their own solutions. J. Amer. Chem. Soc. 19:930–934 (1897), doi:10.1021/ja02086a003.

    Article  Google Scholar 

  9. K. G. Mooney, M. A. Mintun, K. J. Himmelstein, and V. J. Stella. Dissolution kinetics of carboxylic acids I: effect of pH under unbuffered conditions. J. Pharm. Sci. 70:13–22 (1981), doi:10.1002/jps.2600700103.

    Article  PubMed  CAS  Google Scholar 

  10. K. G. Mooney, M. A. Mintun, K. J. Himmelstein, and V. J. Stella. Dissolution kinetics of carboxylic acids II: effects of buffers. J. Pharm. Sci. 70:22–32 (1981), doi:10.1002/jps.2600700104.

    Article  PubMed  CAS  Google Scholar 

  11. A. T. M. Serajuddin, and C. I. Jarowski. pH-solubility profile of papaverine hydrochloride and its relationship to the dissolution rate of sustained-release pellets. J. Pharm. Sci. 73:1203–1208 (1984), doi:10.1002/jps.2600730905.

    Article  PubMed  CAS  Google Scholar 

  12. A. T. M. Serajuddin, and C. I. Jarowski. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical bases and their hydrochloride salts I: phenazopyridine. J. Pharm. Sci. 74:142–147 (1985), doi:10.1002/jps.2600740208.

    Article  PubMed  CAS  Google Scholar 

  13. D. P. McNamara, and G. L. Amidon. Dissolution of acidic and basic compounds from the rotating disk: influence of convective diffusion and reaction. J. Pharm. Sci. 75:858–868 (1986), doi:10.1002/jps.2600750907.

    Article  PubMed  CAS  Google Scholar 

  14. D. P. McNamara, and G. L. Amidon. Reaction plane approach for estimating the effects of buffers on the dissolution rate of acidic drugs. J. Pharm. Sci. 77:511–517 (1988), doi:10.1002/jps.2600770610.

    Article  PubMed  CAS  Google Scholar 

  15. M. Z. Southard, D. W. Green, V. J. Stella, and K. J. Himmelstein. Dissolution of ionizable drugs into unbuffered solution: a comprehensive model for mass transport and reaction in the rotating disk geometry. Pharm. Res. 9:58–69 (1992), doi:10.1023/A:1018979727118.

    Article  PubMed  CAS  Google Scholar 

  16. D. P. McNamara, M. L. Vieira, and J. R. Crison. Dissolution of pharmaceuticals in simple and complex systems. In G. L. Amidon, P. I. Lee, and E. M. Topp (eds.), Transport Processes in Pharmaceutical Systems, Marcel Dekker, New York, 2000, pp. 109–146.

    Google Scholar 

  17. J. Jinno, D. M. Oh, J. R. Crison, and G. L. Amidon. Dissolution of ionizable water-insoluble drugs: the combined effect of pH and surfactant. J. Pharm. Sci. 89:268–274 (2000), doi:10.1002/(SICI)1520-6017(200002)89:2<268::AID-JPS14>3.0.CO;2-F.

    Article  PubMed  CAS  Google Scholar 

  18. L. X. Yu, A. S. Carlin, G. L. Amidon, and A. S. Hussain. Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs. Int. J. Pharm. 270:221–227 (2004), doi:10.1016/j.ijpharm.2003.10.016.

    Article  PubMed  CAS  Google Scholar 

  19. S. Li, S. M. Wong, S. Sethia, H. Almoazen, Y. M. Joshi, and A. T. M. Serajuddin. Investigation of solubility of a free base and two different salt forms as a function of pH. Pharm. Res. 4:628–635 (2005), doi:10.1007/s11095-005-2504-z.

    Article  Google Scholar 

  20. S. Li, P. Doyle, S. Metz, A. E. Royce, and A. T. M. Serajuddin. Effect of chloride ion on dissolution of different salt forms of haloperidol, a model basic drug. J. Pharm. Sci. 94:2224–2231 (2005), doi:10.1002/jps.20440.

    Article  PubMed  CAS  Google Scholar 

  21. J. J. Sheng, N. A. Kasim, R. Chandrasekharan, and G. L. Amidon. Solubilization and dissolution of insoluble weak acid, ketoprofen: effect of pH combined with surfactant. Eur. J. Pharm. Sci. 29:306–314 (2006), doi:10.1016/j.ejps.2006.06.006.

    Article  PubMed  CAS  Google Scholar 

  22. The United States Pharmacopeial Convention. United States Pharmacopeia (USP 23). The United States Pharmacopeial Convention, Rockville, 1995.

    Google Scholar 

  23. K. Bynum, K. Roinestad, A. Kassis, J. Pocreva, L. Gehriein, F. Cheng, and P. Palermo. Analytical performance of a fiber optic dissolution system. Dissol. Tech. 8:13–22 (2001).

    CAS  Google Scholar 

  24. V. A. Gray. Dissolution testing using fiber optics—a regulatory perspective. Amer. Pharm. Rev. 6:26–30 (2003).

    CAS  Google Scholar 

  25. C. J. Toher, P. E. Nielsen, A. S. Foreman, and A. Avdeef. In situ fiber optic dissolution monitoring of vitamin B12 solid dosage formulation. Dissolut. Tech. Nov:20–25 (2003).

    Google Scholar 

  26. A. Avdeef, D. Voloboy, and A. Foreman. Dissolution and solubility. In B. Testa, and H. van de Waterbeemd (eds.), Comprehensive Medicinal Chemistry II, Vol. 5 ADME-TOX Approaches, Elsevier, Oxford, 2006, pp. 399–423.

    Google Scholar 

  27. A. Avdeef. Solubility of sparingly-soluble drugs. In J. Dressman, and C. Reppas (Eds.) The Importance of Drug Solubility). Adv. Drug Deliv. Rev. 59:568–590 (2007), special issue, doi:10.1016/j.addr.2007.05.008.

  28. C. M. Berger, O. Tsinman, D. Voloboy, D. Lipp, S. Stones, and A. Avdeef. Miniaturized intrinsic dissolution rate (Mini-IDR™) measurement of griseofulvin and carbamazepine. Dissolut. Tech. 14:39–41 (2007).

    CAS  Google Scholar 

  29. V. Bijlani, D. Yuonaye, S. Katpally, B. N. Chukwumezie, and M. C. Adeyeye. Monitoring ibuprofen release from multiparticulates: in situ fiber-optic technique versus the HPLC method. AAPS Pharm.Sci.Tech. 8, (2007) Article 52 (http://www.aapspharmscitech.org). doi:10.1208/pt0803052

  30. A. M. Persson, K. Baumann, L. -O. Sundelöf, W. Lindberg, A. Sokolowski, and C. Pettersson. Design and characterization of a new miniaturized rotating disk equipment for in vitro dissolution rate studies. J. Pharm. Sci. 2008, in press. Published online Nov 2007.

  31. D. D. Perrin, and B. Dempsey. Buffers for pH and Metal Ion Control. Chapman and Hall, London, 1974.

    Google Scholar 

  32. H. Wei, and R. Löbenberg. Biorelevant dissolution media as a predictive tool for glyburide a class II drug. Eur. J. Pharm. Sci. 26:45–52 (2006), doi:10.1016/j.ejps.2006.05.004.

    Article  Google Scholar 

  33. S. Bendels, O. Tsinman, B. Wagner, D. Lipp, I. Parrilla, M. Kansy, and A. Avdeef. PAMPA-excipient classification gradient maps. Pharm. Res. 23:2525–2535 (2006), doi:10.1007/s11095-006-9137-8.

    Article  PubMed  CAS  Google Scholar 

  34. A. Avdeef. Absorption and Drug Development. Wiley, Hoboken, 2003.

    Google Scholar 

  35. A. Avdeef, and J. J. Bucher. Accurate measurements of the concentration of hydrogen ions with a glass electrode: calibrations using the Prideaux and other universal buffer solutions and a computer-controlled automatic titrator. Anal. Chem. 50:2137–2142 (1978), doi:10.1021/ac50036a045.

    Article  CAS  Google Scholar 

  36. R. N. Jashnani, P. R. Byron, and R. N. Dalby. Validation of an improved Wood’s rotating disk dissolution apparatus. J. Pharm. Sci. 82:670–671 (1993), doi:10.1002/jps.2600820626.

    Article  PubMed  CAS  Google Scholar 

  37. H. Schlichting, and K. Gersten. Boundary Layer Theory, 8th ed. Springer, Berlin, 2000.

    Google Scholar 

  38. E. L. Cussler. DiffusionMass Transfer in Fluid Systems, 2nd ed. Cambridge Univ. Press, Cambridge, 1997, pp. 70–72.

    Google Scholar 

  39. V. G. Levich. Physiochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs, 1962, pp. 39–72.

    Google Scholar 

  40. P. Bevington, and D. K. Robinson. Data Reduction and Error Analysis for the Physical Sciences, 3rd ed. McGraw-Hill, New York, 2002.

    Google Scholar 

  41. J. R. Vinograd, and J. W. McBain. Diffusion of electrolytes and of the ions in their mixture. J. Amer. Chem. Soc. 63:2008–2015 (1941), doi:10.1021/ja01852a063.

    Article  CAS  Google Scholar 

  42. D. R. Olander. Simultaneous mass transfer and equilibrium chemical reaction. A.I.Ch.E. J. 6:233–239 (1960).

    CAS  Google Scholar 

  43. A. Fini, G. Fazio, and G. Feroci. Solubility and solubilization properties of non-steroidal antiinflammatory drugs. Int. J. Pharm. 126:95–102 (1995), doi:10.1016/0378-5173(95)04102-8.

    Article  CAS  Google Scholar 

  44. A. Avdeef, S. Bendels, O. Tsinman, and M. Kansy. Solubility–excipient classification gradient maps. Pharm. Res. 24:530–545 (2007), doi:10.1007/s11095-006-9169-0.

    Article  PubMed  CAS  Google Scholar 

  45. A. Avdeef. Drug ionization and physicochemical profiling. In R. Mannhold (ed.), Drug Properties: Measurement and Computation, Wiley, Hoboken, 2007, pp. 55–83.

    Google Scholar 

  46. A. Avdeef, and J. Comer. A versatile potentiometric analyzer, part two: multiple known addition and Gran titration techniques. Amer. Lab. 19:116–124 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Avdeef.

Additional information

Part 4 in the API-Sparing Dissolution Method series from pION. Berger et al. (28) is Part 3 in the series.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdeef, A., Tsinman, O. Miniaturized Rotating Disk Intrinsic Dissolution Rate Measurement: Effects of Buffer Capacity in Comparisons to Traditional Wood’s Apparatus. Pharm Res 25, 2613–2627 (2008). https://doi.org/10.1007/s11095-008-9679-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9679-z

KEY WORDS

Navigation