Skip to main content

Advertisement

Log in

Semi-mechanistic Pharmacokinetic/Pharmacodynamic Modelling of the Antinociceptive Response in the Presence of Competitive Antagonism: The Interaction Between Tramadol and its Active Metabolite on μ-Opioid Agonism and Monoamine Reuptake Inhibition, in the Rat

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To establish a semi-mechanistic pharmacokinetic/pharmacodynamic (pk/pd) model for racemic tramadol (T) integrating all the components with a significant contribution to T effects in rats, using cold allodynia in the Bennett model of neuropathic pain.

Methods

Male Sprague-Dawley rats (n=53) were randomly allocated in six groups receiving saline, racemic T (5 mg/kg), RR-T (5 mg/kg), SS-T (5 mg/kg), RR-O-demethyltramadol [RR-M1 (1 mg/kg)] or SS-M1 (30 mg/kg) in two h intravenous infusion.

Results

The μ-opioid effects of RR-M1 (ERR-M1) were described with an effect compartment model. Contribution to analgesic response of RR-T resulted negligible. The monoamine re-uptake inhibition effects (E SS-M1,T) were modelled as an indirect response model incorporating a competitive interaction between SS-T and SS-M1. ERR-M1 and E SS-M1,T were finally considered as a two independent stimuli converging into a single and common antinoceptive stimulus. The estimates of the steady-state plasma concentrations eliciting half of maximum response for RR-M1, SS-T, and SS-M1 were 20.2, 230, and 869 ng/ml, respectively. RR-M1 is the main active component, but SS-T having a significant contribution.

Conclusion

Cold allodynia in the Bennett model has proven an adequate experimental set up to develop complex pk/pd models in analgesia involving different mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

E RR-M1, E SS-M1, E SS-T, E SS-M1,T, E RRSS :

0-1 normalized antinociceptive stimuli elicited by RR-M1, SS-M1, the combination of SS-T and SS-M1, and the interaction between the μ-opioid and monoamine re-uptake inhibition mechanisms, respectively

k e0 :

first order rate constant governing the equilibrium in the distribution between plasma and biophase

k in, and k out are the zero:

and first order rate constants of release and re-uptake of noradrenaline, respectively

M1:

O-demethyltramadol

RR-M1:

RR-O-demethyltramadol

RR-T:

RR-Tramadol

SS-M1:

SS-O-demethyltramadol

SS-T:

SS-Tramadol

T:

racemic tramadol

References

  1. R. B. Raffa, E. Friderichs, W. Reimann, R. P. Shank, E. E. Codd, and J. L. Vaught. Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J Pharmacol Exp Ther 260:275–285 (1992).

    PubMed  CAS  Google Scholar 

  2. H. H. Hennies, E. Friderichs, and J. Schneider. Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids. Arzneimittelforschung 38:877–880 (1988).

    PubMed  CAS  Google Scholar 

  3. M. C. Frink, H. H. Hennies, W. Englberger, M. Haurand, and B. Wilffert. Influence of tramadol on neurotransmitter systems of the rat brain. Arzneimittelforschung 46:1029–1036 (1996).

    PubMed  CAS  Google Scholar 

  4. M. J. Garrido, M. Valle, M. A. Campanero, R. Calvo, and I. F. Troconiz. Modeling of the in vivo antinociceptive interaction between an opioid agonist, (+)-O-desmethyltramadol, and a monoamine reuptake inhibitor, (-)-O-desmethyltramadol, in rats. J Pharmacol Exp Ther 295:352–359 (2000).

    PubMed  CAS  Google Scholar 

  5. B. Driessen, W. Reimann, and H. Giertz. Effects of the central analgesic tramadol on the uptake and release of noradrenaline and dopamine in vitro. Br J Pharmacol 108:806–811 (1993).

    PubMed  CAS  Google Scholar 

  6. T. A. Bamigbade, C. Davidson, R. M. Langford, and J. A. Stamford. Actions of tramadol, its enantiomers and principal metabolite, O-desmethyltramadol, on serotonin (5-HT) efflux and uptake in the rat dorsal raphe nucleus. Br J Anaesth 79:352–356 (1997).

    PubMed  CAS  Google Scholar 

  7. M. Valle, M. J. Garrido, J. M. Pavon, R. Calvo, and I. F. Troconiz. Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effects of main active metabolites of tramadol, (+)-O-desmethyltramadol and (-)-O-desmethyltramadol, in rats. J Pharmacol Exp Ther 293:646–653 (2000).

    PubMed  CAS  Google Scholar 

  8. M. J. Garrido, O. Sayar, C. Segura, J. Rapado, M. C. Dios-Vieitez, M. J. Renedo, and I. F. Troconiz. Pharmacokinetic/pharmacodynamic modeling of the antinociceptive effects of (+)-tramadol in the rat: role of cytochrome P450 2D activity. J Pharmacol Exp Ther 305:710–718 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. D. Le Bars, M. Gozariu, and S. W. Cadden. Animal models of nociception. Pharmacol Rev 53:597–652 (2001).

    PubMed  Google Scholar 

  10. M. J. Garrido, W. Habre, F. Rombout, and I. F. Troconiz. Population pharmacokinetic/pharmacodynamic modelling of the analgesic effects of tramadol in pediatrics. Pharm Res 23:2014–2023 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. R. S. Pedersen, P. Damkier, and K. Brosen. Tramadol as a new probe for cytochrome P450 2D6 phenotyping: a population study. Clin Pharmacol Ther 77:458–467 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. S. Laugesen, T. P. Enggaard, R. S. Pedersen, S. H. Sindrup, and K. Brosen. Paroxetine, a cytochrome P450 2D6 inhibitor, diminishes the stereoselective O-demethylation and reduces the hypoalgesic effect of tramadol. Clin Pharmacol Ther 77:312–323 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. L. Poulsen, L. Arendt-Nielsen, K. Brosen, and S. H. Sindrup. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 60:636–644 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. T. Christoph, B. Kögel, W. Strassburger, and S. A. Schug. Tramadol has a better potency ratio relative to morphine in neuropathic than in nociceptive pain models. Drugs R D 8:51–57 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. G. J. Bennett, and Y. K. Xie. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. T. Christoph, B. Kögel, K. Schiene, M. Méen, J. De Vry, and E. Friederichs. Broad analgesic profile of buprenorphine in rodent models of acute and chronic pain. Eur J Pharmacol 507:87–98 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. S. L. Beal, and L. B. Sheiner. NONMEM User’s Guides. San Francisco: NONMEM Project Group. University of California, 1998.

  18. N. H. Holford. The visual Predictive Check - Superiority to Standard Diagnostic (Rorschach) Plots. PAGE 14 Abstr 738 (2005).www.page-meeting.org/?abstract=738

  19. L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 25:358-371 (1979).

    PubMed  CAS  Google Scholar 

  20. N. L. Dayneka, V. Garg, and W. J. Jusko. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. C. I. Bliss. The toxicity of poissons applied jointly. Ann Appl Biol 26:585–615 (1939).

    Article  CAS  Google Scholar 

  22. D. M. Jonker, S. A. Visser, P. H. van der Graaf, R. A. Voskuyl, and M. Danhof. Towards a mechanism-based analysis of pharmacodynamic drug–drug interactions in vivo. Pharmacol Ther 106:1–18 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. J. Earp, W. Krzyzanski, A. Chakraborty, M. K. Zamacona, and W. J. Jusko. Assessment of drug interactions relevant to pharmacodynamic indirect response models. J Pharmacokinet Pharmacodyn 31:345-380 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. Ch. F. Minto, T. W. Schinder, T. G. Short, K. M. Gregg, A. Gentilini, and S. L. Shafer. Response surface model for anesthetic drug interactions. Anesthesiology 92:1603–1616 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. M. Gårdmark, and M. Hammarlund-Udenaes. Delayed antinociceptive effect following morphine-6-glucuronide administration in the rat-pharmacokinetic/pharmacodynamic modelling. Pain 74:287–296 (1998).

    Article  PubMed  Google Scholar 

  26. T. P. Enggaard, L. Poulsen, L. Arendt-Nielsen, K. Brosen, J. Ossig, and S. H. Sindrup. The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth Analg 102:146–150 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. M. H. Rashid, M. Inoue, K. Toda, and H. Ueda. Loss of peripheral morphine analgesia contributes to the reduced effectiveness of systemic morphine in neuropathic pain. J Pharmacol Exp Ther 309:380–387 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. P. L. Dellemijn, and J. A. Vanneste. Randomised double-blind active-placebo-controlled crossover trial of intravenous fentanyl in neuropathic pain. Lancet 349:753–758 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. J. S. Gimbel, P. Richards, and R. K. Portenoy. Controlled-release oxycodone for pain in diabetic neuropathy: A randomized controlled trial. Neurology 60:927–934 (2003).

    PubMed  CAS  Google Scholar 

  30. C. P. Watson, and N. Babul. Efficacy of oxycodone in neuropathic pain: a randomized trial in postherpetic neuralgia. Neurology 50:1837–1841 (1998).

    PubMed  CAS  Google Scholar 

  31. J. A. Mico, D. Ardid, E. Berrocoso, and A. Eschalier. Antidepressants and pain. Trends Pharmacol Sci 27:348–354 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. R. M. Duhmke, D. D. Cornblath, and J. R. Hollingshead. Tramadol for neuropathic pain. Cochrane Database Syst Rev 2:CD003726 (2004).

    PubMed  Google Scholar 

  33. D. M. Jonker, R. A. Voskuyl, and M. Danhof. Pharmacodynamic analysis of the anticonvulsant effects of Tiagabine and Lamotrigine in combination in the rat. Epilepsia 45:424–435 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. T. Ch. Chou. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We like to thank Manuela Graff, Elke Schumacher, Johanna Korioth and Carolin Koll for excellent technical support. The contribution of Norbert Bromet, Biotec Centre (Orleans, France) to the bioanalytical determination of drug concentrations in plasma is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iñaki F. Trocóniz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beier, H., Garrido, M.J., Christoph, T. et al. Semi-mechanistic Pharmacokinetic/Pharmacodynamic Modelling of the Antinociceptive Response in the Presence of Competitive Antagonism: The Interaction Between Tramadol and its Active Metabolite on μ-Opioid Agonism and Monoamine Reuptake Inhibition, in the Rat. Pharm Res 25, 1789–1797 (2008). https://doi.org/10.1007/s11095-007-9489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9489-8

Key words

Navigation