Skip to main content
Log in

Comparison of Albumin Uptake in Rat Alveolar Type II and Type I-like Epithelial Cells in Primary Culture

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To elucidate and compare the activity and mechanism of albumin uptake in primary cultured alveolar type II and type I-like epithelial cells.

Materials and methods

Type II epithelial cells isolated from rat lungs were cultured for 2 days at 5 × 106 cells/35-mm dish or for 6 days at 2 × 106 cells/35-mm dish. The mRNA expression of marker genes and FITC-albumin uptake were examined.

Results

The cells cultured for 2 days exhibited cuboidal type II epithelial morphology with lamellar bodies inside the cells, while the cells cultured for 6 days exhibited squamous type I epithelial morphology. These morphological characteristics were consistent with the changes in mRNA expression pattern of marker genes. FITC-albumin uptake in both cells was temperature-dependent and was inhibited by metabolic inhibitors and bafilomycin A1. The rate of uptake was much higher in type II cells than type I-like cells. In both cells, FITC-albumin uptake was inhibited by clathrin mediated-endocytosis inhibitors, but not by caveolae mediated-endocytosis inhibitors.

Conclusions

These findings indicate that albumin in alveolar lining fluid is internalized into type II and type I epithelial cells via clathrin-mediated endocytosis, and the rate of albumin uptake is higher in type II cells than type I cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

BAF:

bafilomycin A1

CINC-1:

chemokine-induced neutrophilic chemoattractant-1

CPZ:

chlorpromazine

DMEM/F-12:

Dulbecco’s modified Eagle medium-nutrient mixture F-12 (1:1)

DMSO:

dimethyl sulfoxide

DNP:

2,4-dinitrophenol

2DOG:

2-deoxy-D-glucose

EDTA:

ethylenediaminetetraacetic acid

FBS:

fetal bovine serum

FITC-albumin:

fluorescein isothiocyanate-labeled bovine serum albumin

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

IGFBP6:

insulin-like growth factor binding protein 6

IND:

indomethacin

MCD:

methyl-β-cyclodextrin

mdr1a:

multidrug resistance protein 1a

NaN3 :

sodium azide

NYS:

nystatin

PAO:

phenylarsine oxide

PBS:

phosphate-buffered saline

RTI40:

rat type I cell 40-kDa protein

RT-PCR:

reverse transcription-polymerase chain reaction

SDS:

sodium dodecyl sulfate

SP-B:

surfactant protein B

References

  1. J. S. Patton. Mechanisms of macromolecule absorption by the lungs. Adv. Drug Deliv. Rev. 19:3–36 (1996).

    Article  CAS  Google Scholar 

  2. H. Fehrenbach. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir. Res. 2:33–46 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. R. H. Hastings, H. G. Folkesson, and M. A. Matthay. Mechanisms of alveolar protein clearance in the intact lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 286:L679–L689 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. K. J. Kim and A. B. Malik. Protein transport across the lung epithelial barrier. Am. J. Physiol. Lung Cell. Mol. Physiol. 284:L247–L259 (2003).

    PubMed  CAS  Google Scholar 

  5. T. A. John, S. M. Vogel, R. D. Minshall, K. Ridge, C. Tiruppathi, and A. B. Malik. Evidence for the role of alveolar epithelial gp60 in active transalveolar albumin transport in the rat lung. J. Physiol. 533:547–559 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. R. Yumoto, H. Nishikawa, M. Okamoto, H. Katayama, J. Nagai, and M. Takano. Clathrin-mediated endocytosis of FITC-albumin in alveolar type II epithelial cell line RLE-6TN. Am. J. Physiol. Lung Cell. Mol. Physiol. 290:L946–L955 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. M. Bur, H. Huwer, C. M. Lehr, N. Hagen, M. Guldbrandt, K. J. Kim, and C. Ehrhardt. Assessment of transport rates of proteins and peptides across primary human alveolar epithelial cell monolayers. Eur. J. Pharm. Sci. 28:196–203 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. L. G. Dobbs. Isolation and culture of alveolar type II cells. Am. J. Physiol. 258:L134–L147 (1990).

    PubMed  CAS  Google Scholar 

  9. J. M. Cheek, M. J. Evans, and E. D. Crandall. Type I cell-like morphology in tight alveolar epithelial monolayers. Exp. Cell Res. 184:375–387 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. A. Steimer, E. Haltner, and C. M. Lehr. Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J. Aerosol Med. 18:137–182 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. R. J. Richards, N. Davies, J. Atkins, and V. I. C. Oreffo. Isolation, biochemical characterization, and culture of lung type II cells of the rat. Lung 165:143–158 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. S. H. Hansen, K. Sandvig, and B. van Deurs. Clathrin and HA2 adaptors: effects of potassium depletion, hypertonic medium, and cytosol acidification. J. Cell Biol. 121:61–72 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).

    PubMed  CAS  Google Scholar 

  14. C. F. Cesarone, C. Bolognesi, and L. Santi. Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal. Biochem. 100:188–197 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. R. Gonzalez, Y. H. Yang, C. Griffin, L. Allen, Z. Tigue, and L. Dobbs. Freshly isolated rat alveolar type I cells, type II cells, and cultured type II cells have distinct molecular phenotypes. Am. J. Physiol. Lung Cell. Mol. Physiol. 288:L179–L189 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. M. C. McElroy and M. Kasper. The use of alveolar epithelial type I cell-selective markers to investigate lung injury and repair. Eur. Respir. J. 24:664–673 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. L. J. Reynolds, M. McElroy, and R. J. Richards. Density and substrata are important in lung type II cell transdifferentiation in vitro. Int. J. Biochem. Cell Biol. 31:951–960 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. B. E. Goodman and E. D. Crandall. Dome formation in primary cultured monolayers of alveolar epithelial cells. Am. J. Physiol. 243:C96–C100 (1982).

    PubMed  CAS  Google Scholar 

  19. T. R. Downs and W. W. Wilfinger. Fluorometric quantification of DNA in cells and tissue. Anal. Biochem. 131:538–547 (1983).

    Article  PubMed  CAS  Google Scholar 

  20. A. Chander, R. G. Johnson, J. Reicherter, and A. B. Fisher. Lung lamellar bodies maintain an acidic internal pH. J. Biol. Chem. 261:6126–6131 (1986).

    PubMed  CAS  Google Scholar 

  21. N. Nelson and W. R. Harvey. Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol. Rev. 79:361–385 (1999).

    PubMed  CAS  Google Scholar 

  22. Y. Sasaki, J. Nagai, Y. Kitahara, N. Takai, T. Murakami, and M. Takano. Expression of chloride channel, ClC-5, and its role in receptor-mediated endocytosis of albumin in OK cells. Biochem. Biophys. Res. Commun. 282:212–218 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. M. Takano, Y. Koyama, H. Nishikawa, T. Murakami, and R. Yumoto. Segment-selective absorption of lysozyme in the intestine. Eur. J. Pharmacol. 502:149–155 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. Y. Matsukawa, H. Yamahara, F. Yamashita, V. H. Lee, E. D. Crandall, and K. J. Kim. Rates of protein transport across rat alveolar epithelial cell monolayers. J. Drug Target. 7:335–342 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. K. J. Kim, Y. Matsukawa, H. Yamahara, V. K. Kalra, V. H. Lee, and E. D. Crandall. Absorption of intact albumin across rat alveolar epithelial cell monolayers. Am. J. Physiol. Lung Cell. Mol. Physiol. 284:L458–L465 (2003).

    PubMed  CAS  Google Scholar 

  26. S. D. Conner and S. L. Schmid. Regulated portals of entry into the cell. Nature 422:37–44 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. S. A. Mousavi, L. Malerod, T. Berg, and R. Kjeken. Clathrin-dependent endocytosis. Biochem. J. 377:1–16 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. M. Kirkham and R. G. Parton. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta. 1745:273–286 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. L. H. Wang, K. G. Rothberg, and R. G. Anderson. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol. 123:1107–1117 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. P. Ruckert, S. R. Bates, and A. B. Fisher. Role of clathrin- and actin-dependent endocytotic pathways in lung phospholipid uptake. Am. J. Physiol. Lung Cell. Mol. Physiol. 284:L981–L989 (2003).

    PubMed  Google Scholar 

  31. C. C. Visser, S. Stevanovic, L. Heleen Voorwinden, P. J. Gaillard, D. J. Crommelin, M. Danhof, and A. G. De Boer. Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells in vitro. J. Drug Target. 12:145–150 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. S. B. Sieczkarski and G. R. Whittaker. Dissecting virus entry via endocytosis. J. Gen. Virol. 83:1535–1545 (2002).

    PubMed  CAS  Google Scholar 

  33. H. R. Kim, S. Gil, K. Andrieux, V. Nicolas, M. Appel, H. Chacun, D. Desmaele, F. Taran, D. Georgin, and P. Couvreur. Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell. Mol. Life Sci. 64:356–364 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. L. Campbell, A. J. Hollins, A. Al-Eid, G. R. Newman, C. von Ruhland, and M. Gumbleton. Caveolin-1 expression and caveolae biogenesis during cell transdifferentiation in lung alveolar epithelial primary cultures. Biochem. Biophys. Res. Commun. 262:744–751 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. E. I. Christensen and H. Birn. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am. J. Physiol. Renal Physiol. 280:F562–F573 (2001).

    PubMed  CAS  Google Scholar 

  36. E. I. Christensen and H. Birn. Megalin and cubilin: multifunctional endocytic receptors. Nat. Rev. Mol. Cell Biol. 3:258–268 (2002).

    Article  CAS  Google Scholar 

  37. M. G. Farquhar, A. Saito, D. Kerjaschki, and R. A. Orlando. The Heymann nephritis antigenic complex: megalin (gp330) and RAP. J. Am. Soc. Nephrol. 6:35–47 (1995).

    PubMed  CAS  Google Scholar 

  38. J. Nagai and M. Takano. Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity. Drug Metab. Pharmacokinet. 19:159–170 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. J. Nagai, H. Tanaka, N. Nakanishi, T. Murakami, and M. Takano. Role of megalin in renal handling of aminoglycosides. Am. J. Physiol. Renal Physiol. 281:F337–F344 (2001).

    PubMed  CAS  Google Scholar 

  40. R. Kozyraki. Cubilin, a multifunctional epithelial receptor: an overview. J. Mol. Med. 79:161–167 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. S. M. Hammad, J. L. Barth, C. Knaak, and W. S. Argraves. Megalin acts in concert with cubilin mediate endocytosis of high density lipoproteins. J. Biol. Chem. 275:12003–12008 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. I. Kolleck, H. Wissel, F. Guthmann, M. Schlame, P. Sinha, and B. Rustow. HDL-holoparticle uptake by alveolar type II cells: effect of vitamin E status. Am. J. Respir. Cell Mol. Biol. 27:57–63 (2002).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Hidetoshi Tahara (Graduate School of Biomedical Sciences, Hiroshima University) for phase-contrast microscopic observation of the epithelial cells. We also thank the Institute of Laboratory Animal Science, the Natural Science Center for Basic Research and Development, and the Research Center for Molecular Medicine, Faculty of Medicine, Hiroshima University for the use of their facilities. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikihisa Takano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikehata, M., Yumoto, R., Nakamura, K. et al. Comparison of Albumin Uptake in Rat Alveolar Type II and Type I-like Epithelial Cells in Primary Culture. Pharm Res 25, 913–922 (2008). https://doi.org/10.1007/s11095-007-9426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9426-x

Key words

Navigation